All Issue

2025 Vol.43, Issue 3 Preview Page

Research Article

30 June 2025. pp. 343-356
Abstract
References
1

Almehdi AA, Parfitt DE, Chan H (2002) Propagation of pistachio rootstock by rooted stem cuttings. Sci Hortic 96:359-363. https://doi.org/10.1016/s0304-4238(02)00061-4

10.1016/S0304-4238(02)00061-4
2

Asryants RA, Duszenkova IV, Nagradova NK (1985) Determination of sepharose-bound protein with coomassie brilliant blue G-250. Anal Biochem 151:571-574. https://doi.org/10.1016/0003-2697(85)90222-2

10.1016/0003-2697(85)90222-24096388
3

Atangana AR, Tchoundjeu Z, Asaah EK, Simons A J, Khasa DP (2006) Domestication of Allanblackia floribunda: Amenability to vegetative propagation. For Ecol Manage 237:246-251. https://doi.org/10.1016/j.foreco.2006.09.081

10.1016/j.foreco.2006.09.081
4

Chang E, Guo W, Dong Y, Jia ZR, Zhao XL, Jiang ZP, Zhang L, Zhang J, Liu JF (2023) Metabolic profiling reveals key metabolites regulating adventitious root formation in ancient Platycladus orientalis cuttings. Front Plant Sci 14:1192371. https://doi.org/10.3389/fpls.2023.1192371

10.3389/fpls.2023.119237137496863PMC10367097
5

Chen L, Yu FL, Tong QQ (2000) Discussions on phylogenetic classification and evolution of Sect. Thea. J Tea Sci 20:89-94.

6

Da-Costa CT, De Almeida MR, Ruedell CM, Schwambach J, Maraschin FS, Fett-Neto AG (2013) When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00133

10.3389/fpls.2013.0013323717317PMC3653114
7

Denaxa NK, Roussos PA, Vemmos SN, Fasseas K (2019) Assessing the effect of oxidative enzymes and stem anatomy on adventitious rooting of Olea europaea (L.) leafy cuttings. Spanish J Agric Res 17:e0803. https://doi.org/10.5424/sjar/2019173-14486

10.5424/sjar/2019173-14486
8

Dong LJ (1984) Preliminary study on factors affecting cutting survival rate of large leaf tea varieties. J Tea Commun 4:34-35.

9

Fan K, Shi Y, Luo D, Qian W, Shen J, Ding S, Ding Z, Wang Y (2021) Comparative transcriptome and hormone analysis of mature leaves and new shoots in tea cuttings (Camellia sinensis) among three cultivars with different rooting abilities. J Plant Growth Regul 41:2833-2845. https://doi.org/10.1007/s00344-021-10478-0

10.1007/s00344-021-10478-0
10

Husen A (2011) Changes of soluble sugars and enzymatic activities during adventitious rooting in cuttings of Grewia optiva as affected by age of donor plants and auxin treatments. Am J Plant Physiol 7:1-16. https://doi.org/10.3923/ajpp.2012.1.16

10.3923/ajpp.2012.1.16
11

Jing H, Strader L (2019) Interplay of auxin and cytokinin in lateral root development. Int J Mol Sci 20:486. https://doi.org/10.3390/ijms20030486

10.3390/ijms2003048630678102PMC6387363
12

Li CC, Zhou ZZ, Zhang JH, Liang KN, Ma HM, Huang GH (2016) Effects of IBA treatment on nutrient content and antioxidant enzyme activities of shoot cuttings of Callicarpa nudiflora. Chin J Trop Crops 37:2113-2118. https://doi.org/10.3969/j.issn.1000-2561.2016.11.013

10.3969/j.issn.1000-2561.2016.11.013
13

Li HY, Liu T, Zhang HX, Yang XY, Yang S (2014) Research progress in rooting mechanism of plant cuttings. World For Res 27:23-28. https://doi.org/10.13348/j.cnki.sjlyyj.2014.01.005

10.13348/j.cnki.sjlyyj.2014.01.005
14

Liang YR, Liu ZS, Zhuang WF (1985) Anatomic and biochemical studies during rooting in tea cutting. J Tea Sci 1:19-28.

15

Lima JD, Bolfarini ACB, Modenese-gorla da silva SH, Moraes WS (2013) Propagação de Camellia sinensis: efeito do genótipo, estaca, substrato, recipiente e ácido indolbutírico. Hortic Bras 31:74-79. https://doi.org/10.1590/s0102-05362013000100012

10.1590/S0102-05362013000100012
16

Liu Y (2022) Rooting development and physiological characteristics of Camellia saluenensis cuttings. J West China For Sci 51:13-19. https://doi.org/10.16473/j.cnki.xblykx1972.2022.02.003

10.16473/j.cnki.xblykx1972.2022.02.003
17

Loewus FA (1952) Improvement in anthrone method for determination of carbohydrates. Anal Chem 24:219. https://doi.org/10.1021/ac60061a050

10.1021/ac60061a050
18

Lv G, Qing J, Du H, Du Q, Meng Y, He F, Liu P, Du L, Wang L (2021) Comparing rooting ability and physiological changes of two Eucommia ulmoides improved varieties. For 12:1267. https://doi.org/10.3390/f12091267

10.3390/f12091267
19

Lv GX, Meng YD, Qing J, He F, Liu PF, Du QX, Du HY, Du LY, Wang L (2022) Changes of anatomical structure and physiology during softwood cutting rooting of Eucommia ulmoides 'Huazhong No.6'. Sci Silvae Sinicae 58:113-124. https://doi.org/10.11707/j.1001-7488.20220212

10.11707/j.1001-7488.20220212
20

Mello SdC, Angelotti-Mendonça J, Riboldi LB, Dall'Orto LTC, Suguino E (2016) Impact of indole-3-butyric acid on adventitious root development from cuttings of tea. HortTechnology 26:599-603. https://doi.org/10.21273/HORTTECH03378-16

10.21273/HORTTECH03378-16
21

Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83-96. https://doi.org/10.1111/ppl.12171

10.1111/ppl.1217124547793
22

Porfirio S, Calado ML, Noceda C, Cabrita MJ, Silva MG, Azadi P, Peixe A (2016). Tracking biochemical changes during adventitious root formation in olive (Olea europaea L.). Sci Hortic 204:41-53. https://doi.org/10.1016/j.scienta.2016.03.029

10.1016/j.scienta.2016.03.029
23

Rapaka VK, Bessler B, Schreiner M, Druege U (2005) Interplay between initial carbohydrate availability, current photosynthesis and adventitious root formation in Pelargonium cuttings. Plant Sci 168:1547-1560. https://doi.org/10.1016/j.plantsci.2005.02.006

10.1016/j.plantsci.2005.02.006
24

Rout GR (2006) Effect of auxins on adventitious root development from single node cuttings of Camellia sinensis (L.) Kuntze and associated biochemical changes. Plant Growth Regul 48:111-117. https://doi.org/10.1007/s10725-005-5665-1

10.1007/s10725-005-5665-1
25

Su CF, Duan GZ, Fan GH (2023) Cutting rooting and related physiological and biochemical analysis of Lycium barbarum. Northern Hortic 1:90-97. https://doi.org/10.11937/bfyy.2022173

10.11937/bfyy.2022173
26

Tchoundjeu Z, Leakey RRB (1996) Vegetative propagation of African Mahogany: Effects of auxin, node position, leaf area and cutting length. N For 11:125-136. https://doi.org/10.1007/BF00033408

10.1007/BF00033408
27

Tombesi S, Palliotti A, Poni S, Farinelli D (2015) Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Front Plant Sci 6:973. https://doi.org/10.3389/fpls.2015.00973

10.3389/fpls.2015.0097326635821PMC4654426
28

Tsafouros A, Frantzeskaki A, Assimakopoulou A, Roussos PA (2019) Spatial and temporal changes of mineral nutrients and carbohydrates in cuttings of four stone fruit rootstocks and their contribution to rooting potential. Sci Hortic 253:227-240. https://doi.org/10.1016/j.scienta.2019.04.049

10.1016/j.scienta.2019.04.049
29

Wang X, Feng H, Chang Y, Ma C, Wang L, Hao X, Li A, Cheng H, Wang L, et al. (2020) Population sequencing enhances understanding of tea plant evolution. Nat Commun 11:4447. https://doi.org/10.1038/s41467-020-18228-8

10.1038/s41467-020-18228-832895382PMC7477583
30

Wei K, Wang L, Cheng H, Zhang C, Ma C, Zhang L, Gong W, Wu L (2013) Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia Sinensis (L.) by suppression subtractive hybridization. Gene 514:91-98. https://doi.org/10.1016/j.gene.2012.11.008

10.1016/j.gene.2012.11.00823201417
31

Wei K, Wang LY, Wu LY, Zhang CC, Li HL, Tan LQ, Cao HL, Cheng H (2014) Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.). PLoS One 9:e107201. https://doi.org/10.1371/journal.pone.0107201

10.1371/journal.pone.010720125216187PMC4162609
32

Wen S, Miao D, Cui H, Li S, Gu Y, Jia R, Leng Y (2023) Physiology and transcriptomic analysis of endogenous hormones regulating in vitro adventitious root formation in tree peony. Sci Hortic 318:112122. https://doi.org/10.1016/j.scienta.2023.112122

10.1016/j.scienta.2023.112122
33

Wu SP, Lv LZ, Zheng J, Ren HL, Dang YC, Jiang SF (2014) Exploration of factors influencing survival rate of tea tree single node cutting. J Henan Agric Sci 10:34-37. https://doi.org/10.15933/j.cnki.1004-3268.2014.10.044

10.15933/j.cnki.1004-3268.2014.10.044
34

Yang JB, Yang J, Li HT, Zhao Y, Yang SX (2009) Isolation and characterization of 15 microsatellite markers from wild tea plant (Camellia taliensis) using FIASCO method. Conserv Genet 10:1621-1623.

10.1007/s10592-009-9814-3
35

Yang YJ, Chen L, Yu FL (2003) GB 11767-2003 seedling of tea plant. Standardization Administration of the People's Republic of China.

36

Zhang H, Chen B, Zhao X, Hu J, Dong Z, Xiao H, Yuan Y, Guo F, Wang Y, et al. (2023) Novel insights into the role of leaf in the cutting process of Camellia sinensis using physiological, biochemical and transcriptome analyses. Tree Physiol 43:2031-2045. https://doi.org/10.1093/treephys/tpad101

10.1093/treephys/tpad10137742093
37

Zhang W, Fan J, Tan Q, Zhao M, Zhou T, Cao F (2017) The effects of exogenous hormones on rooting process and the activities of key enzymes of Malus hupehensis stem cuttings. PLoS One 12:e0172320. https://doi.org/10.1371/journal.pone.0172320

10.1371/journal.pone.017232028231330PMC5322878
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 43
  • No :3
  • Pages :343-356
  • Received Date : 2024-10-11
  • Revised Date : 2024-12-03
  • Accepted Date : 2024-12-17