All Issue

2025 Vol.43, Issue 1 Preview Page

Research Article

28 February 2025. pp. 125-141
Abstract
References
1

Adams SR, Cockshull KE, Cave CRJ (2001) Effect of temperature on the growth and development of tomato fruits. Ann Bot 88:869-877. https://doi.org/10.1006/anbo.2001.1524

10.1006/anbo.2001.1524
2

Adams SR, Woodward GC, Valdés VM (2002) The effects of leaf removal and of modifying temperature set-points with solar radiation on tomato yields. J Hortic Sci Biotechnol 77:733-738. https://doi.org/10.1080/14620316.2002.11511565

10.1080/14620316.2002.11511565
3

Akram M, Farooq S, Afzaal M, Naz F, Arshad R (2006) Chlorophyll fluorescence in different wheat genotypes grown under salt stress. Pak J Bot 38:1739-1743.

4

Anten NPR, Ackerly DD (2001) Canopy‐level photosynthetic compensation after defoliation in a tropical understorey palm. Funct Ecol 15:252-262. https://doi.org/10.1046/j.1365-2435.2001.00517.x

10.1046/j.1365-2435.2001.00517.x
5

Ayari O, Dorais M, Gosselin A (2000) Daily variations of photosynthetic efficiency of greenhouse tomato plants during winter and spring. JASHS 125:235-241. https://doi.org/10.21273/JASHS.125.2.235

10.21273/JASHS.125.2.235
6

Bhandari SR, Kim YH, Lee JG (2018) Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Hortic Sci 36:619-629. https://doi.org/10.12972/kjhst.20180062

10.12972/kjhst.20180062
7

Boote KJ, Rybak MR, Scholberg JM, Jones JW (2012) Improving the CROPGRO-tomato model for predicting growth and yield response to temperature. HortScience 47:038-1049. https://doi.org/10.21273/HORTSCI.47.8.1038

10.21273/HORTSCI.47.8.1038
8

Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6:2812-2831. https://doi.org/10.1039/C3AY41907J

10.1039/C3AY41907J
9

Bussotti F, Gerosa G, Digrado A, Pollastrini M (2020) Selection of chlorophyll fluorescence parameters as indicators of photosynthetic efficiency in large scale plant ecological studies. Ecol Indic 108:105686. https://doi.org/10.1016/j.ecolind.2019.105686

10.1016/j.ecolind.2019.105686
10

Byrd GT, Ort DR, Ogren WL (1995) The effects of chilling in the light on ribulose-1, 5-bisphosphate carboxylase/oxygenase activation in tomato (Lycopersicon esculentum Mill.). Plant Physiol 107:585-591. https://doi.org/10.1104/pp.107.2.585

10.1104/pp.107.2.58512228384PMC157162
11

Chen LX, Mao HT, Lin S, Din AMU, Yin XY, Yuan M, Chen YE (2023) Different photosynthetic response to high light in four triticeae crops. Int J Mol Sci 24:1569. https://doi.org/10.3390/ijms24021569

10.3390/ijms2402156936675085PMC9862584
12

Choi HG (2021) Correlation among phenotypic parameters related to the growth and photosynthesis of strawberry (Fragaria × ananassa Duch.) grown under various light intensity conditions. Front Plant Sci 12:647585. https://doi.org/10.3389/fpls.2021.647585

10.3389/fpls.2021.64758534177977PMC8222793
13

Damour G, Simonneau T, Cochard H, Urban L (2010) An overview of models of stomatal conductance at the leaf level. Plant Cell Environ 33:1419-1438. https://doi.org/10.1111/j.1365-3040.2010.02181.x

10.1111/j.1365-3040.2010.02181.x20545879
14

Dorai M, Papadopoulos A, Gosselin A (2001) Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie 21:367-383. https://doi.org/10.1051/agro:2001130

10.1051/agro:2001130
15

Dorais M, Gosselin A (2002) Physiological response of greenhouse vegetable crops to supplemental lighting. https://doi.org/10.17660/ActaHortic.2002.580.6

10.17660/ActaHortic.2002.580.6
16

Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J Sci Food Agric 83:369-382. https://doi.org/10.1002/jsfa.1370

10.1002/jsfa.1370
17

Erge HS, Karadeniz F, Koca N, Soyer Y (2008) Effect of heat treatment on chlorophyll degradation and color loss in green peas. Gida 33:225-233.

18

Food and Agriculture Organization of the United Nations (FAO) (2021) https://www.fao.org/faostat/en/#data/QCL. Accessed 3 March 2023

19

Haghighi M, Abolghasemi R, da Silva JAT (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231-240. https://doi.org/10.1016/j.scienta.2014.09.006

10.1016/j.scienta.2014.09.006
20

Hashimoto H, Uragami C, Cogdell RJ (2016) Carotenoids and photosynthesis. Carotenoids in Nature: Biosynthesis, Regulation and Function pp 111-139. https://doi.org/10.1007/978-3-319-39126-7_4

10.1007/978-3-319-39126-7_427485220
21

Hassannejad S, Lotfi R, Ghafarbi SP, Oukarroum A, Abbasi A, Kalaji HM, Rastogi A (2020) Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. Plants 9:529. https://doi.org/10.3390/plants9040529

10.3390/plants904052932325997PMC7238274
22

Kalaji MH, Guo P (2008) Chlorophyll fluorescence: a useful tool in barley plant breeding programs. Plant Signal Behav 29:439-463.

23

Kim D, Moon T, Kwon S, Hwang I, Son JE (2023) Supplemental inter-lighting with additional far-red to red and blue light increases the growth and yield of greenhouse sweet peppers (Capsicum annuum L.) in winter. Hortic Environ Biotechnol 64:83-95. https://doi.org/10.1007/s13580-022-00450-6

10.1007/s13580-022-00450-6
24

Kim SE, Lee MY, Kim YS (2013) Characterization of photosynthetic rates by tomato leaf position. KSHS 31:146- 152. https://doi.org/10.7235/hort.2013.12130

10.7235/hort.2013.12130
25

Kong DX, Li YQ, Wang ML, Bai M, Zou R, Tang H, Wu H (2016) Effects of light intensity on leaf photosynthetic characteristics, chloroplast structure, and alkaloid content of Mahonia bodinieri (Gagnep.) Laferr. Acta Physiologiae Plantarum 38:1-15. https://doi.org/10.1007/s11738-016-2147-1

10.1007/s11738-016-2147-1
26

Korea Statistical Information Service (KOSIS) (2022) https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1ET0027&conn_path=I3 Accessed 2 November 2023

27

Kwon OH, Choi HG (2022) Yield, flower quality, and photo-physiological responses of cut rose flowers grafted onto three different rootstocks in summer season. Agronomy 12:1468. https://doi.org/10.3390/agronomy12061468

10.3390/agronomy12061468
28

Kwon OH, Choi HG, Kim SJ, Lee YR, Jung HH, Park KY (2022) Changes in yield, quality, and morphology of three grafted cut roses grown in a greenhouse year-round. Horticulturae 8:655. https://doi.org/10.3390/horticulturae8070655

10.3390/horticulturae8070655
29

Lee H, Lee JG, Cho MC, Hwang I, Hong KH, Kwon DH, Ahn YK (2022) Rootstock performance of cherry tomatoes grown in soil cultivation: Evaluation of growth, yield, and photosynthesis. Hortic Sci Technol 40:376-387. doi.org/10.7235/HORT.20220034

10.7235/HORT.20220034
30

León-Chan RG, López-Meyer M, Osuna-Enciso T, Sañudo-Barajas JA, Heredia JB, León-Félix J (2017) Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. EEB 139:143-151. https://doi.org/10.1016/j.envexpbot.2017.05.006

10.1016/j.envexpbot.2017.05.006
31

Li X, Cai J, Liu F, Dai T, Cao W, Jiang D (2014) Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat. Plant Physiol Biochem 82:34-43. https://doi.org/10.1016/j.plaphy.2014.05.005

10.1016/j.plaphy.2014.05.00524887010
32

Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Curr protoc food anal chem 1:F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

10.1002/0471142913.faf0403s01
33

Lu T, Song Y, Yu H, Li Q, Xu J, Qin Y, Jiang W (2022) Cold stress resistance of tomato (Solanum lycopersicum) Seedlings is enhanced by light supplementation from underneath the canopy. Front Plant Sci 13:831314. https://doi.org/10.3389/fpls.2022.831314

10.3389/fpls.2022.83131435498645PMC9039533
34

Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659-668. https://doi.org/10.1093/jexbot/51.345.659

10.1093/jexbot/51.345.65910938857
35

McElroy JS, Kopsell DA, Sorochan JC, Sams CE (2006) Response of creeping bentgrass carotenoid composition to high and low irradiance. Crop Sci 46:2606-2612. https://doi.org/10.2135/cropsci2006.02.0119

10.2135/cropsci2006.02.0119
36

Meena YK, Khurana DS, Kaur N, Singh K (2018) Towards enhanced low temperature stress tolerance in tomato: an approach. J Environ Biol 39:529-535. https://doi.org/10.22438/jeb/39/4/MRN-590

10.22438/jeb/39/4/MRN-590
37

Meng Z, Lu T, Zhang G, Mang Qi, Tang W, Li L, Li T (2017) Photosystem inhibition and protection in tomato leaves under low light. Sci Hortic 217:145-155. https://doi.org/10.1016/j.scienta.2017.01.039

10.1016/j.scienta.2017.01.039
38

Mesa T, Polo J, Arabia A, Caselles V, Munné-Bosch S (2022) Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality. J Plant Physiol 268:153581. https://doi.org/10.1016/j.jplph.2021.153581

10.1016/j.jplph.2021.15358134915351
39

Nicky JA, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Plant Physiol 10:3523-3543. https://doi.org/10.1093/jxb/ers100

10.1093/jxb/ers10022467407
40

Oh SJ, Zhin KL, Koh SC (2009) Characterization of Chl a fluorescence of hydrophytes under cadmium stress. J Environ Sci 18:1361-1368. https://doi.org/10.5322/JES.2009.18.12.1361

10.5322/JES.2009.18.12.1361
41

Pan C, Ahammed GJ, Li X, Shi K (2018) Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front Plant Sci 9:1739. https://doi.org/10.3389/fpls.2018.01739

10.3389/fpls.2018.0173930534134PMC6275242
42

Partelli FL, Vieira HD, Viana AP, Batista-Santos P, Rodrigues AP, Leitão AE, Ramalho JC (2009) Low temperature impact on photosynthetic parameters of coffee genotypes. PAB 44:1404-1415. https://doi.org/10.1590/S0100-204X2009001100006

10.1590/S0100-204X2009001100006
43

Peet MM, Welles G (2005) Greenhouse tomato production. In tomatoes. CABI Publishing, Wallingford, UK, pp 257-304. https://doi.org/10.1079/9780851993966.0257

10.1079/9780851993966.0257
44

Roh YS, Yoo YK (2023) Light quality of light emitting diodes affects growth, chlorophyll fluorescence and phytohormones of Tulip 'Lasergame'. Hortic Environ Biotechnol 64:245-255. https://doi.org/10.1007/s13580-022-00481-z

10.1007/s13580-022-00481-z
45

Ruiz-Nieves JM, Ayala-Garay OJ, Serra V, Dumont D, Vercambre G, Génard M, Gautier H (2021) The effects of diurnal temperature rise on tomato fruit quality. Can the management of the greenhouse climate mitigate such effects? Sci Hortic 278:109836. https://doi.org/10.1016/j.scienta.2020.109836

10.1016/j.scienta.2020.109836
46

Rural Develoment Administation (RDA) (2018) Tomato. RDA, Wanju, Korea, p 38, p 162.

47

Shamshiri RR, Jones JW, Thorp KR, Ahmad D, Man HC, Taheri S (2018) Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. Int Agrophys 32:287-302. https://doi.org/10.1515/intag-2017-0005

10.1515/intag-2017-0005
48

Sinha S, Kukreja B, Arora P, Sharma M, Pandey GK, Agarwal M, Chinnusamy V (2015) The omics of cold stress responses in plants. Elucidation of Abiotic Stress Signaling in Plants: Functional Genomics Perspectives 2:143-194. https://doi.org/10.1007/978-1-4939-2540-7_6

10.1007/978-1-4939-2540-7_6PMC4476600
49

Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesi: Mechanisms, Regulation and Adaptation, pp 445-483

50

Tanaka A, Tanaka R (2006) Chlorophyll metabolism. Curr Opin Plant Biol 9:248-255. https://doi.org/10.1016/j.pbi.2006.03.011

10.1016/j.pbi.2006.03.01116603411
51

Theocharis A, Clément C, Barka EA (2012) Physiological and molecular changes in plants grown at low temperatures. Planta 235:1091-1105. https://doi.org/10.1007/s00425-012-1641-y

10.1007/s00425-012-1641-y22526498
52

Trouwborst G, Sander WH, Harbinson J, Wim Van I (2011) The influence of light intensity and leaf age on the photosynthetic capacity of leaves within a tomato canopy. J Hortic Sci Biotechnol 86:403-407. https://doi.org/10.1080/14620316.2011.11512781

10.1080/14620316.2011.11512781
53

Van Ploeg D, Heuvelink E (2005) Influence of sub-optimal temperature on tomato growth and yield: a review. J Hortic Sci Biotechnol 80:652-659. https://doi.org/10.1080/14620316.2005.11511994

10.1080/14620316.2005.11511994
54

Wi SH, Yeo KH, Choi HS, Yu I, Lee JH, Lee HJ (2021) Effects of low air temperature and light intensity on yield and quality of tomato at the early growth stage. J Bio-Env Con 30:448-454. https://doi.org/10.12791/KSBEC.2021.30.4.448

10.12791/KSBEC.2021.30.4.448
55

Willits DH, Peet MM (2001) Measurement of chlorophyll fluorescence as a heat stress indicator in tomato: laboratory and greenhouse comparisons. JASHS 126:188-194. https://doi.org/10.21273/JASHS.126.2.188

10.21273/JASHS.126.2.188
56

Yamori W, Kusumi K, Iba K, Terashima I (2020) Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice. Plant Cell Environ 43:1230-1240. https://doi.org/10.1111/pce.13725

10.1111/pce.1372531990076
57

Yang HR, Park YJ, Kim MJ, Yeon JY, Kim WS (2022) Growth responses of Korean Endemic Hosta minor under sub-optimal artificial lighting. Hortic Sci Technol 40:286-295. https://doi.org/10.7235/HORT.20220027

10.7235/HORT.20220027
58

Yang X, Xu H, Shao L, Li T, Wang Y, Wang R (2018) Response of photosynthetic capacity of tomato leaves to different LED light wavelength. EEB 150:161-171. https://doi.org/10.1016/j.envexpbot.2018.03.013

10.1016/j.envexpbot.2018.03.013
59

Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313-324. https://doi.org/10.1016/j.cell.2016.08.029

10.1016/j.cell.2016.08.02927716505PMC5104190
60

Zushi K, Matsuzoe N (2017) Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci Hortic 219:216-221. https://doi.org/10.1016/j.scienta.2017.03.016

10.1016/j.scienta.2017.03.016
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 43
  • No :1
  • Pages :125-141
  • Received Date : 2023-07-25
  • Revised Date : 2023-12-30
  • Accepted Date : 2024-01-10