All Issue

2022 Vol.40, Issue 1 Preview Page

Research Article

28 February 2022. pp. 30-38
Abstract
References
1
Ainsworth EA, Davey PA, Bernacchi CJ, Dermody OC, Heaton EA, Moore DJ, Morgan PB, Naidu SL, Ra HSY, et al (2002) A meta-analysis of elevated [CO2] effects on soybean (Glycine max) physiology, growth and yield. Glob Chang Biol 8:695-709. doi:10.1046/j.1365-2486.2002.00498.x 10.1046/j.1365-2486.2002.00498.x
2
Alves EC, Guimaraes JER, Franco CKB, Martins ABG (2016) Number of leaflets on rooting of lychee herbaceous cuttings. Ciencia Rural 46:1003-1006. doi:10.1590/0103-8478cr20140435 10.1590/0103-8478cr20140435
3
ArcView Market Research (2017) The state of legal marijuana markets. 5th ed. ArcView Market Research, San Francisco, CA, USA
4
Caplan D, Dixon M, Zheng YB (2017) Optimal rate of organic fertilizer during the flowering stage for cannabis grown in two coir-based substrates. Hortscience 52:1796-1803. doi:10.21273/HORTSCI12401-17 10.21273/HORTSCI12401-17
5
Caplan D, Stemeroff J, Dixon M, Zheng YB (2018) Vegetative propagation of cannabis by stem cuttings: effects of leaf number, cutting position, rooting hormone, and leaf tip removal. Canadian Journal of Plant Science 98:1126-1132. doi:10.1139/cjps-2018-0038 10.1139/cjps-2018-0038
6
Casteel CL, O'Neill BF, Zavala JA, Bilgin DD, Berenbaum MR, Delucia EH (2008) Transcriptional profiling reveals elevated CO2 and elevated O3 alter resistance of soybean (Glycine max) to Japanese beetles (Popillia japonica). Plant Cell Environ 31:419-34. doi:10.1111/j.1365-3040.2008.01782.x 10.1111/j.1365-3040.2008.01782.x18194424
7
Costa JM, Challa H (2002) The effect of the original leaf area on growth of softwood cuttings and planting material of rose. Scientia Horticulturae 95:111-121. doi:10.1016/S0304-4238(02)00023-7 10.1016/S0304-4238(02)00023-7
8
Davey PA, Olcer H, Zakhleniuk O, Bernacchi CJ, Calfapietra C, Long SP, Raines CA (2006) Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell and Environment 29:1235-1244. doi:10.1111/j.1365-3040.2006.01503.x 10.1111/j.1365-3040.2006.01503.x17080946
9
David J (2009) The propagation, characterisation and optimisation of Cannabis sativa L. as a phytopharmaceutical. Ph.D. thesis, King's College London, London, UK
10
Davis TD, Potter JR (1989) Relations between carbohydrate, water status and adventitious root-formation in feafy pea cuttings rooted under various levels of atmospheric CO2 and relative-humidity. Physiol Plant 77:185-190. doi:10.1111/j.1399-3054.1989.tb04967.x 10.1111/j.1399-3054.1989.tb04967.x
11
De Almeida MR, Aumond M, Da Costa CT, Schwambach J, Ruedell CM, Correa LR, Fett-Neto AG (2017) Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. Trees-Structure and Function 31:1377-1390. doi:10.1007/s00468-017-1550-6 10.1007/s00468-017-1550-6
12
Duarte B, Santos D, Marques JC, Cacador I (2013) Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback - Implications for resilience in climate change. Plant Physiol Biochem 67:178-188. doi:10.1016/j.plaphy.2013.03.004 10.1016/j.plaphy.2013.03.00423579080
13
Hamilton JG, Thomas RB, Delucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell and Environment 24:975-982. doi:10.1046/j.0016-8025.2001.00730.x 10.1046/j.0016-8025.2001.00730.x
14
Hartmann HT, Kester DE (1975) Plant propagation: principles and practices. 3rd edition, Prentice-Hall, New Jersey, USA, p 662
15
Jifon JL, Wolfe DW (2002) Photosynthetic acclimation to elevated CO2 in Phaseolus vulgaris L. is altered by growth response to nitrogen supply. Glob Chang Biol 8:1018-1027. doi:10.1046/j.1365-2486.2002.00531.x 10.1046/j.1365-2486.2002.00531.x
16
Jung DH, Kim D, Yoon HI, Moon TW, Park KS, Son JE (2016) Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth stages. Hortic Environ Biotechnol 57:487-492. doi:10.1007/s13580-016-0103-z 10.1007/s13580-016-0103-z
17
Kanemoto K, Yamashita Y, Ozawa T, Imanishi N, Nguyen NT, Suwa R, Mohapatra PK, Kanai S, Moghaieb RE, et al (2009) Photosynthetic acclimation to elevated CO2 is dependent on N partitioning and transpiration in soybean. Plant Science 177:398-403. doi:10.1016/j.plantsci.2009.06.017 10.1016/j.plantsci.2009.06.017
18
Klopotek Y, George E, Druege U, Klaering HP (2012) Carbon assimilation of petunia cuttings in a non-disturbed rooting environment: Response to environmental key factors and adventitious root formation. Sci Hortic 145:118-126. doi:10.1016/j.scienta.2012.08.004 10.1016/j.scienta.2012.08.004
19
Lam VP, Kim SJ, Park JS (2020) Optimizing the electrical conductivity of a nutrient solution for plant growth and bioactive compounds of Agastache rugosa in a plant factory. Agronomy 10:76. doi:10.3390/agronomy10010076 10.3390/agronomy10010076
20
Lata H, Chandra S, Khan IA, Elsohly MA (2009) Propagation through alginate encapsulation of axillary buds of Cannabis sativa L. - an important medicinal plant. Physiol Mol Biol Plants 15:79-86. doi:10.1007/s12298-009-0008-8 10.1007/s12298-009-0008-823572915PMC3550375
21
Lebedev V (2019) The rooting of stem cuttings and the stability of uidA gene expression in generative and vegetative progeny of transgenic pear rootstock in the field. Plants-Basel 8. doi:10.3390/plants8080291 10.3390/plants808029131430873PMC6724118
22
Lee TD, Tjoelker MG, Ellsworth DS, Reich PB (2001) Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply. New Phytologist 150:405-418. doi:10.1046/j.1469-8137.2001.00095.x 10.1046/j.1469-8137.2001.00095.x
23
Newton AC, Muthoka PN, Dick JM (1992) The influence of leaf area on the rooting physiology of leafy stem cuttings of Terminalia spinosa Engl. Trees-Structure and Function 6:210-215. doi:10.1007/BF00224338 10.1007/BF00224338
24
Ofori DA, Newton AC, Leakey RRB, Grace J (1996) Vegetative propagation of Milicia excelsa by leafy stem cuttings: Effects of auxin concentration, leaf area and rooting medium. For Ecol Manag 84:39-48. doi:10.1016/0378-1127(96)03737-1 10.1016/0378-1127(96)03737-1
25
OuYang FQ, Wang JH, Li Y (2015) Effects of cutting size and exogenous hormone treatment on rooting of shoot cuttings in Norway spruce [Picea abies (L.) Karst.]. New Forests 46:91-105. doi:10.1007/s11056-014-9449-1 10.1007/s11056-014-9449-1
26
Park SM, Won EJ, Park YG, Jeong BR (2011) Effects of node position, number of leaflets left, and light intensity during cutting propagation on rooting and subsequent growth of domestic roses. Hortic. Environ. Biotechnol 53:339-343. doi:10.1007/s13580-011-0163-z 10.1007/s13580-011-0163-z
27
Park SW, Kwack Y, Chun C (2017) Growth of runner plants grown in a plant factory as affected by light intensity and container volume. Hortic Sci Technol 35:439-445. doi:10.12972/kjhst.20170047 10.12972/kjhst.20170047
28
Potter DJ (2014) A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the UK. Drug Test Anal 6:31-38. doi:10.1002/dta.1531 10.1002/dta.153124115748
29
Robredo A, Perez-Lopez U, Lacuesta M, Mena-Petite A, Munoz-Rueda A (2010) Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations. Biol Plant 54:285-292. doi:10.1007/s10535-010-0050-y 10.1007/s10535-010-0050-y
30
Singh SK, Reddy VR (2016) Methods of mesophyll conductance estimation: its impact on key biochemical parameters and photosynthetic limitations in phosphorus-stressed soybean across CO2. Physiol Plant 157:234-254. doi:10.1111/ppl.12415 10.1111/ppl.1241526806194
31
Smalley TJ, Dirr MA, Armitage AM, Wood BW, Teskey RO, Severson RF (1991) Photosynthesis and leaf water, carbohydrate, and hormone status during rooting of stem cuttings of Acer-rubrum. J Am Soc Hortic Sci 116:1052-1057. doi:10.21273/JASHS.116.6.1052 10.21273/JASHS.116.6.1052
32
Svenson SE, Davies FT, Duray SA (1995) Gas-exchange, water relations, and dry-weight partitioning during root initiation and development of poinsettia cuttings. J Am Soc Hortic Sci 120:454-459. doi:10.21273/JASHS.120.3.454 10.21273/JASHS.120.3.454
33
Tchoundjeu Z, Leakey RRB (1996) Vegetative propagation of African Mahogany: Effects of auxin, node position, leaf area and cutting length. New Forests 11:125-136. doi:10.1007/BF00033408 10.1007/BF00033408
34
Tissue DT, Lewis JD (2010) Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric [CO2] vary with phosphorus supply. Tree Physiology 30:1361-1372. doi:10.1093/treephys/tpq077 10.1093/treephys/tpq07720884610
35
Tombesi S, Palliotti A, Poni S, Farinelli D (2015) Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Front Plant Sci 6:973. doi:10.3389/fpls.2015.00973 10.3389/fpls.2015.0097326635821PMC4654426
36
Wang L, Feng ZZ, Schjoerring JK (2013) Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. Agric Ecosyst Environ 178:57-63. doi:10.1016/j.agee.2013.06.013 10.1016/j.agee.2013.06.013
37
Xin PP, Li B, Zhang HH, Hui J (2019) Optimization and control of the light environment for greenhouse crop production. Sci Rep 9:8650. doi:10.1038/s41598-019-44980-z 10.1038/s41598-019-44980-z31209246PMC6572858
38
Xu CY, Salih A, Ghannoum O, Tissue DT (2012) Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature. J Exp Bot 63:5829-5841. doi:10.1093/jxb/ers231 10.1093/jxb/ers23122915750
39
Yamdagni N, Sen D (1973) Role of leaves present on the stem cuttings for vegetative propagation in Portulaca grandiflora l. Biochem Physiol Pflanz 164:447-449. doi:10.1016/S0015-3796(17)30715-1 10.1016/S0015-3796(17)30715-1
40
Zhang P, Zhang ZX, Li B, Zhang HH, Hu J, Zhao J (2020) Photosynthetic rate prediction model of newborn leaves verified by core fluorescence parameters. Sci Rep 10:3013. doi:10.1038/s41598-020-59741-6 10.1038/s41598-020-59741-632080238PMC7033164
41
Zheng JF, Ji F, He DX, Niu GH (2019a) Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a led plant factory. Agronomy 9:875. doi:10.3390/agronomy9120875 10.3390/agronomy9120875
42
Zheng YP, Li F, Hao LH, Yu JJ, Guo LL, Zhou HR, Ma C, Zhang XX, Xu M (2019b) Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19. doi:10.1186/s12870-019-1788-9 10.1186/s12870-019-1788-931195963PMC6567668
43
Zhou WL, Liu WK, Yang QC (2012) Quality changes in hydroponic lettuce grown under pre-harvest short-duration continuous light of different intensities. J Hortic Sci Biotechnol 87:429-434. doi:10.1080/14620316.2012.11512890 10.1080/14620316.2012.11512890
44
Zobolo AM (2010) Effect of temperature, light intensity and growth regulators on propagation of Ansellia Africana from cuttings. Afr J Biotechnol 9:5566-5574. doi:10.5897/AJB09.1495 10.5897/AJB09.1495
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 40
  • No :1
  • Pages :30-38
  • Received Date : 2021-06-01
  • Revised Date : 2021-11-10
  • Accepted Date : 2021-11-24