Research Article
Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J Exp Bot 53:2039-2055. https://doi.org/10.1093/jxb/erf072
10.1093/jxb/erf07212324528Ambard-Bretteville F, Sorin C, Rébeillé F, Hourton-Cabassa C, Des Francs-Small CC (2003) Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress. Plant Mol Biol 52:1153-1168. https://doi.org/10.1023/b:plan.0000004306.96945.ef
10.1023/B:PLAN.0000004306.96945.ef14682615Andersson I (2008) Catalysis and regulation in Rubisco. J Exp Bot 59:1555-1568. https://doi.org/10.1093/jxb/ern091
10.1093/jxb/ern09118417482Begley TP, Chatterjee A, Hanes JW, Hazra A, Ealick SE (2008) Cofactor biosynthesis-still yielding fascinating new biological chemistry. Curr Opin Chem Biol 12:118-125. https://doi.org/10.1016/j.cbpa.2008.02.006
10.1016/j.cbpa.2008.02.00618314013PMC2677635Bellier J, Nokin MJ, Lardé E, Karoyan P, Peulen O, Castronovo V, Bellahcène A (2019) Methylglyoxal, a potent Inducer of AGEs, connects between diabetes and cancer. Diabetes Res Clin Pract 148:200-211. https://doi.org/10.1016/j.diabres.2019.01.002
10.1016/j.diabres.2019.01.00230664892Bhat JY, Thieulin-Pardo G, Hartl FU, Hayer-Hartl M (2017) Rubisco activases: AAA+ chaperones adapted to enzyme repair. Front Mol Biosci 4:20. https://doi.org/10.3389/fmolb.2017.00020
10.3389/fmolb.2017.0002028443288PMC5385338Bierhaus A, Fleming T, Stoyanov S, Leffler A, Babes A, Neacsu C, Sauer SK, Eberhardt M, Schnölzer M, et al. (2012) Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat Med 18:926-933. https://doi.org/10.1038/nm.2750
10.1038/nm.275022581285Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:1-15. https://doi.org/10.1186/1475-2891-3-5
10.1186/1475-2891-3-515140261PMC442131Bradford MM (1976) A rapid sensitive methods for the quantization of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248-255. https://doi.org/10.1016/0003-2697(76)90527-3
10.1016/0003-2697(76)90527-3942051Caverzan A, Passaia G, Rosa SB, Ribeiro, Laz F, Margis-Pinheiro M (2012) Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet Mol Biol 35:1011-1019. https://doi.org/10.1590/S1415-47572012000600016
10.1590/S1415-4757201200060001623412747PMC3571416Chen Y, Wang XM, Zhou L, He Y, Wang D, Qi YH, Jiang DA (2015) Rubisco activase is also a multiple responder to abiotic stresses in rice. PLoS One 10:e0140934. https://doi.org/10.1371/journal.pone.0140934
10.1371/journal.pone.014093426479064PMC4610672Christopher MR, Gayle MV, Ann AR, Adam DH, Dale RL, Patrick AR, Philip LF (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genome 5:339-347. https://doi.org/10.1007/s11295-008-0190-9
10.1007/s11295-008-0190-9Chung JS, Choi SH, Kim JH, Shim SY, Adnan MR, Chang ES, Sohn YG, Kim YH, Kim JG, Lee JJ (2021) Comparative analysis of the proteome in the peel and flesh of 'Hong-ro' apples. Hort Sci Tech 39:191-203. https://doi.org/10.7235/HORT.20210017
10.7235/HORT.20210017Ciszak EM, Korotchkina LG, Dominiak PM, Sidhu S, Patel MS (2003) Structural basis for flip-flop action of thiamin pyrophosphate-dependent enzymes revealed by human pyruvate dehydrogenase. J Biol 278:21240-21246. https://doi.org/10.1074/jbc.M300339200
10.1074/jbc.M30033920012651851Colas des Francs-Small C, Ambard-Bretteville F, Darpas A, Sallantin M, Huet JC, Pernollet JC, Rémy R (1992) Variation of the polypeptide composition of mitochondria isolated from different potato tissues. Plant Physiol 98:273-278. https://doi.org/10.1104/pp.98.1.273
10.1104/pp.98.1.27316668624PMC1080179Cordain L, Toohey L, Smith MJ, Hickey MS (2000) Modulation of immune function by dietary lectins in rheumatoid arthritis. Br J Nutr 83:207-217. https://doi.org/10.1017/S0007114500000271
10.1017/S000711450000027110884708Cummins I, Wortley DJ, Sabbadin F, He Z, Coxon CR, Straker HE, Sellars JD, Knight K, Edwards L, et al. (2013) Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci 110:5812-5817. https://doi.org/10.1073/pnas.1221179110
10.1073/pnas.122117911023530204PMC3625300Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338-350. https://doi.org/10.1016/j.phytochem.2009.12.012
10.1016/j.phytochem.2009.12.01220079507Engelberth J, Seidl-Adams I, Schultz JC, Tumlinson JH (2007) Insect elicitors and exposure to green leafy volatiles differentially upregulate major octadecanoids and transcripts of 12-oxo phytodienoic acid reductases in Zea mays. Mol Plant Microbe Interact. 20:707-716. https://doi.org/10.1094/MPMI-20-6-0707
10.1094/MPMI-20-6-070717555278Estévez IH, Hernández MR (2020) Plant Glutathione S-transferases: An overview. Plant Gene 23:100233. https://doi.org/10.1016/j.plgene.2020.100233
10.1016/j.plgene.2020.100233Farrera DO, Galligan JJ (2022) The Human Glyoxalase Gene Family in Health and Disease. Chem Res Toxi 35:1766-1776. https://doi.org/10.1021/acs.chemrestox.2c00182
10.1021/acs.chemrestox.2c0018236048613PMC10013676Fitzpatrick TB, Chapman LM (2020) The importance of thiamine (vitamin B1) in plant health: From crop yield to biofortification. J Biol Chem 295:12002-12013. https://doi.org/10.1074/jbc.REV120.010918
10.1074/jbc.REV120.01091832554808PMC7443482Foyer CH, Noctor GD (2013) Redox signaling in plants. Antioxid Redox Signal 16:2087-2090. https://doi.org/10.1089/ars.2013.5278
10.1089/ars.2013.527823442120Gerdes S, Lerma-Ortiz C, Frelin O, Seaver SM, Henry CS, de CrécyLagard V, Hanson AD (2012) Plant B vitamin pathways and theircompartmentation: A guide for the perplexed. J Exp Bot 63:5379-5395 https://doi.org/10.1093/jxb/ers208
10.1093/jxb/ers20822915736Goyer A (2010) Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71:1615-1624. https://doi.org/10.1016/j.phytochem.2010.06.022
10.1016/j.phytochem.2010.06.02220655074Guarino C, Arena S, De Simone L, D'Ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M (2007) Proteomic analysis of the major soluble components in Annurca apple flesh. Mol Nutr Food Res 51:255-262. https://doi.org/10.1002/mnfr.200600133
10.1002/mnfr.20060013317266180Hamid R, Masood A (2009) Dietary lectins as disease causing toxicants. Pak J Nutr 8:293-303. https://doi.org/10.3923/pjn.2009.293.303
10.3923/pjn.2009.293.303Han SE, Seo YS, Kim DE, Sung SK, Kim WT (2007) Expression of MdCAS1 and MdCAS2, encoding apple b-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cynanide detoxification in Fuji apple (Malus domestica Borkh.) fruits. Plant Cell Rep 26:1321-1331. https://doi.org/10.1007/s00299-007-0316-9
10.1007/s00299-007-0316-917333023He Y, Zhou C, Huang M, Tang C, Liu X, Yue Y, Diao Q, Zheng Z, Liu D (2020) Glyoxalase system: A systematic review of its biological activity, related-diseases, screening methods and small molecule regulators. Biomed Pharmacoth 131:110663. https://doi.org/10.1016/j.biopha.2020.110663
10.1016/j.biopha.2020.11066332858501Herndl A, Marzban G, Kolarich D, Hahn R, Boscia D, Hemmer W (2007) Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reactivity. Electrophoresis 28:437-448. https://doi.org/10.1002/elps.200600342
10.1002/elps.20060034217195260Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Remy R, Colas des Francs-Small C (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116:627-635. https://doi.org/10.1104/pp.116.2.627
10.1104/pp.116.2.6279490763PMC35120Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel glectrophoresis. Plant Physiol 81:802-806. https://doi.org/10.1104
10.1104/pp.81.3.80216664906PMC1075430Iganberdiev AU, Bykova NV, Kleezkowski LA (1999) Origins and metabolism of formate in higher plants. Plant Physiol Biochem 37:503-513. https://doi.org/10.1016/S0981-9428(00)80102-3
10.1016/S0981-9428(00)80102-3Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2in the chloroplast lumen of Arabidopsis. Plant Physiol 145:668-679. https://doi.org/10.1104/pp.107.105866
10.1104/pp.107.10586617827269PMC2048798Janick J, Cummins JV, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding, tree and tropical fruits. Wiley, New York, pp 1-66.
Kim JH, Shim SY, Chang ES, Sohn YG, Kim YH, Kim JG, Lee JJ (2020) A large-scale proteome analysis of proteins expressed in the peel of Malus Domestica 'Hong-ro'. Hortic Sci Technol 38:795-809. https://doi.org/10.7235/HORT.20200072
10.7235/HORT.20200072Kwon K, Choi D, Hyun JK, Jung HS, Baek K, Park C (2013) Novel glyoxalases from Arabidopsis thaliana. FEBS J 280:3328-3339. https://doi.org/10.1111/febs.12321
10.1111/febs.1232123651081Lai KW, Yau CP, Tse YC, Jiang LW, Yip WK (2009) Heterologous expression analyses of rice OsCAS in Arabidopsis and in yeast provide evidence for its roles in cyanide detoxification rather than in cysteine synthesis in vivo. J Exp Bot 60:993-1008. https://doi.org/10.1093/jxb/ern343
10.1093/jxb/ern34319181864PMC2652057Li CL, Wang M, Wu XM, Chen DH, Lv HJ, Shen JL, Qiao Z, Zhang W (2016) THI1, a thiamine thiazole synthase, interacts with Ca2+-dependent protein kinase CPK33 and modulates the S-type anion channels and stomatal closure in Arabidopsis. Plant Physiol 170:1090-1104. https://doi.org/10.1104/pp.15.01649
10.1104/pp.15.0164926662273PMC4734576Lin J, Nazarenus TJ, Frey JL, Liang X, Wilson MA, Stone JM (2011) A plant DJ-1 homolog Is essential for Arabidopsis thaliana chloroplast development. PLoS ONE 6:2373. https://doi.org/10.1371/journal.pone.0023731
10.1371/journal.pone.002373121886817PMC3160306Liu J, Yang H, Lu Q, Wen X, Chen F, Peng L, Zhang L, Lu C (2012) PSBP-DOMAIN PROTEIN1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in arabidopsis. Plant Cell 24:4992-5006. https://doi.org/10.1105/tpc.112.106542
10.1105/tpc.112.10654223221595PMC3556971Lydakis-Simantiris N, Betts SD, Yocum CF (1999) Leucine 245 is a critical residue for folding and function of the manganese stabilizing protein of photosystem II. Biochemistry 38:15528-15535. https://doi.org/10.1021/bi991599m
10.1021/bi991599m10569936Machingura M, Salomon E, Jez JM, Ebbs SD (2016) The β-cyanoalanine synthase pathway: beyond cyanide detoxification. Plant Cell Environ 39:2329-2341. https://doi.org/10.1111/pce.12755
10.1111/pce.1275527116378Mano KM, Soman V (2020) Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: a personal perspective. Toxicology 432:152369. https://doi.org/10.1016/j.tox.2020.152369
10.1016/j.tox.2020.15236932007488Marondedze C, Thomas LA (2012) Apple hypanthium firmness: new insights from comparative proteomics. Appl Biochem Biotechnol 168:306-326. https://doi.org/10.1007/s12010-012-9774-9
10.1007/s12010-012-9774-922733236Marrs KA (1996) The functions and regulation of glutathiones-transferases in plants. Annu Rev Plant Biol 47:127-158. https://doi.org/10.1146/annurev.arplant.47.1.127
10.1146/annurev.arplant.47.1.12715012285Matsui NM, Smith-Beckerman DM, Epstein LB (1999) Staining of preparative 2-D gels. In AJ Link, ed, 2-D Proteome Analysis Protocols. Humana Press, Totowa, NJ, USA, pp 301-311. https://doi.org/10.1016/j.plantsci.2005.03.027
10.1016/j.plantsci.2005.03.027Mattheis JP (1991) Changes in headspace volatiles during physiological development of Bisbee Delicious apple fruit. J Agric Food Chem 39:1902-1906. https://doi.org/10.1021/jf00011a002
10.1021/jf00011a002McCandless D (2010) Thiamine deficiency and associate clinical disorders. New York, NY: Humana Press. pp 157-159. ISBN 978-1-60761-310-7.
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
10.1016/S1360-1385(02)02312-912234732Pandey S, Fartyal D, Agarwal A, Shukla T, James D, Kaul T, Negi YK, Arora S, Reddy MK (2017) Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front Plant Sci 8:581. https://doi.org/10.3389/fpls.2017.00581
10.3389/fpls.2017.0058128473838PMC5397514Peng Y, Lu R (2007) Prediction of apple fruit firmness and soluble solids content using characteristics of multispectral scattering images. J Food Engineer 82:142-152. https://doi.org/10.1016/j.jfoodeng.2006.12.027
10.1016/j.jfoodeng.2006.12.027Portis AR Jr, Li C, Wang D, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597-1604. https://doi.org/10.1093/jxb/erm240
10.1093/jxb/erm24018048372Prabhakar V, Lottgert T, Gigolashvili T, Bell K, Flugge U, Hausler RE (2009) Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett 583:983-991. https://doi.org/10.1016/j.febslet.2009.02.017
10.1016/j.febslet.2009.02.01719223001Rollins JA, Habte E, Templer SE, Colby T, Schmidt J, von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64:3201-3212. https://doi.org/10.1093/jxb/ert158
10.1093/jxb/ert15823918963PMC3733145Roose JL, Frankel LK, Bricker TM (2014) The PsbP domain protein 1 functions in the assembly of lumenal domains in photosystem I. J Biol Chem 289:23776-23785. https://doi.org/10.1074/jbc.M114.589085
10.1074/jbc.M114.58908525008325PMC4156051Saigo M, Tronconi MA, Gerrard Wheeler MC, Alvarez CE, Drincovich MF, Andreo CS (2013) Biochemical approaches to C4 photosynthesis evolution studies: the case of malic enzymes decarboxylases. Photos Res 117:177-187. https://doi.org/10.1007/s11120-013-9879-1
10.1007/s11120-013-9879-123832612Sauvion N, Nardon C, Febvay G, Gatehouse AM, Rahbé Y (2004) Binding of the insecticidal lectin concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells. J Insect Physiol 50:1137-1150. https://doi.org/10.1016/j.jinsphys.2004.10.006
10.1016/j.jinsphys.2004.10.00615670861Schaller F, Biesgen C, Missig C, Altmann C, Weiler EW (2000) 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210:979-984. https://doi.org/10.1007/s004250050706
10.1007/s00425005070610872231Selinski J, Koenig N, Wellmeyer B, Hanke GT, Linke V, Neuhaus HE, Scheibe R (2014) The plastid-localized NAD-dependent malate dehydrogenase is crucial for energy homeostasis in developing Arabidopsis thaliana seeds. Mol Plant 7:170-186. https://doi.org/10.1093/mp/sst151
10.1093/mp/sst15124198233Smith TJ, Johnson CR, Koshy R, Hess SY, Qureshi UA, Mynak ML, Fischer PR (2021) Thiamine deficiency disorders: a clinical perspective. Ann N Y Acad Sci 1498:9-28. https://doi.org/10.1111/nyas.14536
10.1111/nyas.1453633305487PMC8451766Song J, Bangerth F (1996) The effect of harvest date on aroma compound production from "Golden Delicious" apple fruit and relationship to respiration and ethylene production. Postharvest Biol Technol 8:259-269. https://doi.org/10.1016/0925-5214(96)00020-8
10.1016/0925-5214(96)00020-8Spaans SK, Weusthuis RA, van der Oost J, Kengen SW (2015) NADPH-generating systems in bacteria and archaea. Front Microbiol 6:742. https://doi.org/10.3389/fmicb.2015.00742
10.3389/fmicb.2015.0074226284036PMC4518329Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutsumi N, Nishimura M, Seto H, Nojiri H, et al. (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517-526. https://doi.org/10.1007/s00425-007-0635-7
10.1007/s00425-007-0635-717938955Thornalley PJ (2003) Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 31:1343-1348. https://doi.org/10.1042/bst0311343
10.1042/bst031134314641060Tijero V, Girardi F, Botton A (2021) Fruit development and primary metabolism in apple. Agronomy 11:1160. https://doi.org/10.3390/agronomy11061160
10.3390/agronomy11061160Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151:421-432. https://doi.org/10.1104/pp.109.140046
10.1104/pp.109.14004619641031PMC2735988Van't Veer P, Jansen MC, Klerk A, Kok FJ (2000) Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr. 3:103-107. https://doi.org/10.1017/S1368980000000136
10.1017/S136898000000013610786730Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicology 44:385-403. https://doi.org/10.1016/j.toxicon.2004.05.005
10.1016/j.toxicon.2004.05.00515302522Vojdani A (2015) Lectins, agglutinins, and their roles in autoimmune reactivities. Altern Ther 21:46-51.
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG (2007) Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 24:988-1008. https://doi.org/10.1039/B703105J
10.1039/b703105j17898894Wu J, Gao H, Zhao L, Liao X, Chen F, Wang Z, Hu X (2007) Chemical compositional characterization of some apple cultivars. Food Chem 103:88-93. https://doi.org/10.1016/j.foodchem.2006.07.030
10.1016/j.foodchem.2006.07.030Xu XM, Lin H, Maple J, Bjorkblom B, Alves G, Larsen JP, Møller SG (2010) The ArabidopsisDJ-1a protein confers stress protection through cytosolic SOD activation. J Cell Sci 123:1644-1651. https://doi.org/10.1242/jcs.063222
10.1242/jcs.06322220406884Yi X, McChargue M, Laborde S, Frankel LK, Bricker M (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16179-16174. https://doi.org/10.1074/jbc.M501550200
10.1074/jbc.M50155020015722336Yu XZ, Lu PC, Yu Z (2012) On the role of beta-cyanoalanine synthase (CAS) in metabolism of free cyanide and ferri-cyanide by rice seedlings. Ecotoxicology 21:548-556. https://10.1007/s10646-011-0815-x
10.1007/s10646-011-0815-x22068263- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 43
- No :3
- Pages :373-387
- Received Date : 2024-10-02
- Revised Date : 2024-12-31
- Accepted Date : 2025-01-06
- DOI :https://doi.org/10.7235/HORT.20250035