Research Article
Akbas SO, Kulhawy FH (2010) Characterization and estimation of geotechnical variability in Ankara clay: a case history. Geotech Geol Eng 28:619-631. https://doi.org/10.1007/s10706-010-9320-x
10.1007/s10706-010-9320-xBartlett F, Hong HP, Zhou W (2003a) Load factor calibration for the proposed 2005 edition of the national building code of Canada: companion-action load combinations. Can J Civ Eng 30:440-448. https://doi.org/10.1139/l02-086
10.1139/l02-086Bartlett F, Hong HP, Zhou W (2003b) Load factor calibration for the proposed 2005 edition of the national building code of Canada: statistics of loads and load effects. Can J Civ Eng 30:429-439. https://doi.org/10.1139/l02-087
10.1139/l02-087Briassoulis D, Dougka G, Dimakogianni D, Vayas I (2016) Analysis of the collapse of a greenhouse with vaulted roof. Biosyst Eng 151:495-509. https://doi.org/10.1016/j.biosystemseng.2016.10.018
10.1016/j.biosystemseng.2016.10.018Choi MK, Yun SW, Yu IH, Lee JW, Lee SY, Yoon YC (2015) Settlement instrumentation of greenhouse foundation in reclaimed land. J Bio-Env Con 24:85-92. https://doi.org/10.12791/KSBEC.2015.24.2.085
10.12791/KSBEC.2015.24.2.085Hong HP, Ye W (2014) Analysis of extreme ground snow loads for Canada using snow depth records. Nat Hazards 73:355-371. https://doi.org/10.1007/s11069-014-1073-z
10.1007/s11069-014-1073-zHong SW, Kim RW, Choi W (2017) Structural safety of single-span greenhouses under wind load of costal reclaimed lands. J Korean Soc Agric Eng 59:109-117. https://doi.org/10.5389/KSAE.2017.59.4.109
10.5389/KSAE.2017.59.4.109Jahani E, Shayanfar MA, Barkhordari MA (2013) A new adaptive importance sampling Monte Carlo method for structural reliability. KSCE J Civ Eng 17:210-215. https://doi.org/10.1007/s12205-013-1779-6
10.1007/s12205-013-1779-6JGHA (Japan Greenhouse Horticulture Association) (1997) Standard for structures of greenhouses, pp.41. eds. Jgha, Japan.
Jeon J, Kim S, Kim T (2025) Structural safety changes and reinforcement effect of raising the height of Korean plastic greenhouses. Hortic Sci Technol 43:198-211. https://doi.org/10.7235/HORT.20250019
10.7235/HORT.20250019Jeon J, Lee H, Yoon S (2022) Optimal section design of Korean agricultural greenhouse response to climate change based on Monte Carlo simulation. Agriculture-Basel 12:1413. https://doi.org/10.3390/agriculture12091413
10.3390/agriculture12091413Jung H, Yang S, Lee T (2015) A study on the improvement of greenhouse frame to bear the heavy snow. J Korea Acad-Ind Cooper Soc 16:2242-2248. https://doi.org/10.5762/KAIS.2015.16.3.2242
10.5762/KAIS.2015.16.3.2242Kang J, Jeon J, Yoon S, Choi W (2019) Failure conditions for stand-alone cold-frame greenhouse under snow loads. Paddy Water Environ 17:651-663. https://doi.org/10.1007/s10333-019-00691-9
10.1007/s10333-019-00691-9Kariyawasam SN (1998) Development of probability-based resistance factors and companion-action load factors for concrete design in Canada. University of Alberta, Canada. https://doi.org/10.7939/R3CJ87R8F
10.7939/R3CJ87R8FKasama K, Whittle AJ, Zen KK (2012) Effect of spatial variability on the bearing capacity of cement-treated ground. Soils Found 52:600-619. https://doi.org/10.1016/j.sandf.2012.07.003
10.1016/j.sandf.2012.07.003Kim MG, Nam SW, Suh WM, Yoon YC, Lee SG, Lee HW (2000) Agricultural structural engineering. pp.38-52. eds. Hyangmunsa. Seoul, Korea
Kim RW, Lee IB, Yeo UH, Lee SY (2019) Evaluation of various national greenhouse design standards for wind loading. Biosyst Eng 188:136-154. https://doi.org/10.1016/j.biosystemseng.2019.10.004
10.1016/j.biosystemseng.2019.10.004Kulhawy FH, Phoon KK, Prakoso WA, Hirany A (2007) Reliability-based design of foundations for transmission line structures. In Electrical Transmission Line and Substation Structures: Structural Reliability in a Changing World, pp 184-194. https://doi.org/10.1061/40790(218)17
10.1061/40790(218)17Lee JY, Ryu HR (2022) Structural analysis of pipe-framed greenhouses using interface elements for cross-over connections. Eng Struct 266. https://doi.org/10.1016/j.engstruct.2022.114504
10.1016/j.engstruct.2022.114504Lee SG, Lee JW, Kwak CS, Lee HW (2008) Experimental study on the ground support conditions of pipe ends in single span pipe greenhouse. J Bio-Env Con 17:188-196.
Lee SI, Lee JH, Jeong YJ, Choi W (2020) Development of a structural analysis model for pipe structures to reflect ground conditions. Biosyst Eng 197:231-244. https://doi.org/10.1016/j.biosystemseng.2020.06.018
10.1016/j.biosystemseng.2020.06.018Lee Y, Lee C, Ahn S (2015) Estimation of freshly fallen snow unit weight and maximum probable snow load. 15:47-55. https://doi.org/10.9798/KOSHAM.2015.15.1.47
10.9798/KOSHAM.2015.15.1.47Li SH (2023) Effect of nonstationary extreme wind speeds and ground snow loads on the structural reliability in a future Canadian changing climate. Struct Saf 101. https://doi.org/10.1016/j.strusafe.2022.102296
10.1016/j.strusafe.2022.102296Li XY, Wang C, Jiang YC, Bai YK (2022) Dynamic response analysis of a whole steel frame solar greenhouse under wind loads. Sci Rep-Uk 12:5200. https://doi.org/10.1038/s41598-022-09248-z
10.1038/s41598-022-09248-z35338250PMC8956605Lisnianski A, Levitin G (2003) Multi-state system reliability: assessment, optimization and applications. World Scientifichttps://doi.org/10.1142/5221
10.1142/5221Melchers RE, Beck AT (2018) Structural reliability analysis and prediction, Ed Third edition. Wiley, Hoboken, New Jerseyhttps://doi.org/10.1002/9781119266105
10.1002/9781119266105NAAS (National Institute of Agricultural Sciences) (2015) Greenhouse structure design standard (Draft). In. National Institute of Agricultural Sciences, pp 104-123
Ogawa H, Tsuge I, Sato Y, Hoshiba S, Yamashita S (1989) Experimental analysis on strength of pipe-houses with ground anchoring (1) actual size experiment. J Soc Agric Struct Jpn 19:173-182. https://doi.org/10.11449/sasj1971.19.173
10.11449/sasj1971.19.173RDA (Rural Development Administration) (2017) Greenhouse structure design standard (Draft). RDA (2019) Design drawings and specifications for disaster-resistant pipe greenhouse type standards for horticultural specialized facilities. In Notification No. 2019-44 of the Ministry of Agriculture, Forestry and Livestock Food, Jeonju, South Korea
Ryu HR, Cho MW, Yu IH, Moon DG (2014) Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation. Korean J Agric Sci 41:455-460. https://doi.org/10.7744/cnujas.2014.41.4.455
10.7744/cnujas.2014.41.4.455Ryu HR, Lee EH, Cho MW, Yu IH, Kim YC (2012) Evaluation on the behavioral characteristics of plastic greenhouse by full-scale testing and finite element analysis. J Bio-Env Con 21:459-465https://koreascience.kr/article/JAKO201213459004471.pdf
Shin HH, Ryu HR, Yu IH, Cho MW, Seo TC, Kim SY, Choi MK (2021) Effect of the pipe joint on structural performance of a single-span greenhouse: a full-scale experimental and numerical study. J Bio-Env Con 30:410-418. https://doi.org/10.12791/KSBEC.2021.30.4.410
10.12791/KSBEC.2021.30.4.410Uematsu Y, Takahashi K (2020) Collapse and reinforcement of pipe-framed greenhouse under static wind loading. J Civ Eng Archit 14:583-594. https://doi.org/10.17265/1934-7359/2020.11.001
10.17265/1934-7359/2020.11.00133253344Wang C, Nan B, Wang TL, Bai YK, Li YQ (2021) Wind pressure acting on greenhouses: a review. Int J Agr Biol Eng 14:1-8. https://doi.org/10.25165/j.ijabe.20211402.5261
10.25165/j.ijabe.20211402.5261Wang C, Xu ZY, Jiang YC, Wang TL (2023) Numerical analysis of static and dynamic characteristics of large-span pipe-framed plastic greenhouses. Biosyst Eng 232:67-80. https://doi.org/10.1016/j.biosystemseng.2023.06.013
10.1016/j.biosystemseng.2023.06.013Yu I, Kim H, Necesito IV, Jeong S (2014) Assessment and improvement of snow load codes and standards in Korea. KSCE J Civ Eng Res 34:1421-1433. https://doi.org/10.12652/Ksce.2014.34.5.1421
10.12652/Ksce.2014.34.5.1421Yu I, Lee Y, Jeong S (2017) Improvement of snow depth design criteria for green house. J Korean Soc Hazard Mitig 17:243-251. https://doi.org/10.9798/KOSHAM.2017.17.1.243
10.9798/KOSHAM.2017.17.1.243Yun S, Shin Y, Yu C, Yoon Y (2013) Analysis of working load on greenhouse foundation considering wind and snow load. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1037, pp 99-104. https://doi.org/10.17660/ActaHortic.2014.1037.8
10.17660/ActaHortic.2014.1037.8Yun SW, Choi MK, Lee SY, Kang DH, Moon SD, Yu C, Yoon YC (2015) Uplift capacity of shallow foundation for greenhouse. J Bio-Env Con 24:187-195. https://doi.org/10.12791/KSBEC.2015.24.3.187
10.12791/KSBEC.2015.24.3.187Yun SW, Choi MK, LeeSY, Kang DH, Kim HT, Yoon YC (2016) Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse. J Agric Life Sci 50:273-281. http://dx.doi.org/10.14397/jals.2016.50.1.273
10.14397/jals.2016.50.1.273- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 43
- No :5
- Pages :564-581
- Received Date : 2025-03-11
- Revised Date : 2025-04-22
- Accepted Date : 2025-04-24
- DOI :https://doi.org/10.7235/HORT.20250050


Horticultural Science and Technology








