All Issue

2018 Vol.36, Issue 5 Preview Page

Research Article

31 October 2018. pp. 619-629
Abstract
References
1
Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541-550. doi:10.1007/s11120-008-9331-0
2
Anjum SA, Xie X-Y, Wang L-C, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026-2032. doi:10.5897/AJAR10.027
3
Asada K, Endo T, Mano J, Miyake C (1998) Molecular mechanism for relaxation of and protection from light stress. In K Satoh, N Murata, ed, Stress Responses of Photosynthetic Organisms. Elsevier, Amsterdam, The Netherlands, pp 37-52. doi:10.1016/B978-0-444- 82884-2.50006-6
4
Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. doi:10.1093/jxb/erh196
5
Berry J, Bjorkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann Rev Plant Physiol 31:491-543. doi:10.1146/annurev.pp.31.060180.002423
6
Bhandari SR, Lee MJ, Rhee HC, Choi GL, Oh SS, Lee JT, Lee JG (2018) Rapid monitoring of proline accumulation in paprika leaf sap relative to leaf position and water stress. Hortic Environ Biotechnol 59:483-489. doi:10.1007/s13580-018-0063-6
7
Bielczynski LW, Lacki MK, Hoefnagels I, Gambin A, Croce R (2017) Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiol 175:1634-1648. doi:10.1104/pp.17.00904
8
Boyer JS (1982) Plant productivity and environment. Science 218:443-448. doi:10.1126/science.218.4571.443
9
Briantais JM, Dacosta J, Goulas Y, Ducruet JM, Moya I (1996) Heat stress induces in leaves an increase of the minimum level of chlorophyll fluorescence, F0: a time-resolved analysis. Photosynth Res 48:189-196. doi:10.1007/BF00041008
10
Camejo D, Rodrıguez P, Morales MA, Dell Amico JM, Torrecillas A, Alarcon JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281-289. doi:10.1016/j.jplph.2004.07.014
11
Chen WR, Zheng JS, Li YQ, Guo WD (2012) Effects of high temperature on photosynthesis, chlorophyll fluorescence, chloroplast ultrastructure and antioxidant activities in fingered citron. Russ J Plant Phys 59:732-740. doi:10.1134/S1021443712060040
12
Feller U, Vaseva II (2014) Extreme climatic events: impacts of drought and high temperature on physiological processes in agronomically important plants. Front Environ Sci 2:1-16. doi:10.3389/fenvs.2014.00039
13
Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhang JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agron Crop Sci 200:143-155. doi:10.1111/jac.12045
14
Georgieva K, Yordanov I (1993) Temperature dependence of chlorophyll fluorescence parameters of pea seedlings. J Plant Physiol 142:151-155. doi:10.1016/S0176-1617(11)80955-7
15
Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24-35. doi:10.1016/j.scienta.2012.02.002
16
Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169-1183. doi:10.1111/j.1365-3040.2004.01222.x
17
Haq NU, Raza S, Luthe DS, Heckathorn SA, Shakeel SN (2013) A dual role for the chloroplast small heat shock protein of Chenopodium album including protection from both heat and metal stress. Plant Mol Biol Rep 31:398-408. doi:10.1007/s11105-012-0516-5
18
Hogewoning SW, Harbinson J (2007) Insights on the development, kinetics, and variation of photoinhibition using chlorophyll fluorescence imaging of a chilled, variegated leaf. J Exp Bot 58:453-463. doi:10.1093/jxb/erl219
19
Huang L, Jiang G-B, Zhu Y, Dang C-H, Wang H-X, Zhang Y-X, Wang L-S, Li G-Z, Zou J-X, et al (2018) Effects of high temperature on leaf gas exchange and chlorophyll fluorescence parameters of the north high bush blueberry. Chin J Ecol 35:871-879. doi:10.13292/ j.l000-4890.201604.022
20
Janka E, Korner O, Rosenqvist E, Ottosen C-O (2013) High temperature stress monitoring and detection using chlorophyll a fluorescence and infrared thermography in chrysanthemum (Dendranthema grandiflora). Plant Physiol Biochem 67:87-94. doi:10.1016/j.plaphy. 2013.02.025
21
Kalisz A, Jezdinsky A, Pokluda R, Sekara A, Grabowska A, Gil J (2016) Impacts of chilling on photosynthesis and chlorophyll pigment content in Juvenile basil cultivars. Hortic Environ Biotechnol 57:330-339. doi:10.1007/s13580-016-0095-8
22
Kim J-S, Ahn J, Lee S-J, Moon BK, Ha T-Y, Kim S (2011) Phytochemicals and antioxidant activity of fruits and leaves of paprika (Capsicum annuum L., var. Special) cultivated in Korea. J Food Sci 76:193-198. doi:10.1111/j.1750-3841.2010.01891.x
23
Kim S, Park JJ, Moon BK (2015) Phytochemicals and quality characteristics of candied paprika (Capsicum annuum L.) during storage. Int J Food Sci Technol 50:1847-1854. doi:10.1111/ijfs.12849
24
Krause G, Santarius K (1975) Relative thermostability of the chloroplast envelope. Planta 127:285-299. doi:10.1007/BF00380726
25
Lichtenthaler HK, Buschmann C, Knapp M (2005) How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ration Rfd of leaves with the PAM fluorometer. Photosynthetica 43:379-393. doi:10.1007/ s11099-005-0062-6
26
Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1-6. doi:10.1111/j.1438-8677.2009.00319.x
27
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence - a practical guide. J Exp Bot 51:659-668. doi:10.1093/jexbot/51.345.659
28
Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75-82. doi:10.1016/j.jplph.2016.07.006
29
Ogweno JO, Song X-S, Hu W-H, Shi K, Zhou Y-H, Yu J-Q (2009) Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Sci Hortic 123:17-22. doi:10.1016/j.scienta.2009.07.011
30
Olvera-Gonzalez E, Alaniz-Lumbreras D, Ivanov-Tsonchev R, Villa-Hernandez V, de la Rosa-Vargas I, Lopez-Cruz I, Silos-Espino H, Lara-Herrera A (2013) Chlorophyll fluorescence emission of tomato plants as a response to pulsed light based LEDs. Plant Growth Regul 69:117-123. doi:10.1007/s10725-012-9753-8
31
Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, et al (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46-58. doi:10.1016/j.agee.2008.01.019
32
Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55:1195-1205. doi:10.1093/jxb/erh145
33
Partelli FL, Vieira HD, Viana AP, Batista-Santos P, Rodrigues AP, Leitao AE, Ramalho JC (2009) Low temperature impact on photosynthetic parameters of coffee genotypes. Pesq Agropec Bras 44:1404-1415. doi:10.1590/S0100-204X2009001100006
34
Phyo AK, Chung N-J (2017) Influence of high temperature on chlorophyll fluorescence and its varietal variation in rice. Phillipine J Crop Sci 42:59-68
35
Schreiber U, Klughammer C (2008) Non-photochemical fluorescence quenching and quantum yields in PS I and PS II: analysis of heat-induced limitations using Maxi-Imaging-PAM and dual-PAM-100. PAM Appl Notes 1:15-18
36
Sharma DK, Fernandez JO, Rosenqvist E, Ottosen C-O (2014) Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat. J Plant Physiol 171:576:586. doi:10.1016/j.jplph.2013.09.025
37
Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89-97. doi:10.1016/j.tplants.2009.11.009
38
Toomey HM (2013) Chlorophyll fluorescence and thermal stress in Archaias angulatus (Class Foraminifera). MS Thesis, College of Marine Science, University of South Florida, USA. pp 1-130
39
Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei Sci Fis Nat 19:325-346. doi:10.1007/s12210-008-0022-8
40
Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book. 8:e0140. doi:10.1199/tab.0140
41
Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199-223. doi:10.1016/ j.envexpbot.2007.05.011
42
Wang J, Cui L, Wang Y, Li J (2009) Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. Biol Plant 53:237-242. doi:10.1007/s10535-009-0045-8
43
Warren CR (2008) Rapid measurement of chlorophylls with a mircoplate reader. J Plant Nutr 31:1321-1332. doi:10.1080/01904160802135092
44
Weng J-H, Lai M-F (2005) Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. Photosynthetica 43:439-444. doi:10.1007/s11099-005-0070-6
45
Yamada M, Hidaka T, Fukamachi H (1996) Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Sci Hortic 67:39-48. doi:10.1016/S0304-4238(96)00931-4
46
Yang X, Song J, Fillmore S, Pang X, Zhang Z (2011) Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit. Postharvest Biol Technol 62:246-257. doi:10.1016/j.postharvbio.2011.06.011
47
Zhou R, Wu Z, Wang X, Rosenqvist E, Wang Y, Zhao T, Ottosen C-O (2018) Evaluation of temperature stress tolerance in cultivated and wild tomatoes using photosynthesis and chlorophyll fluorescence. Hortic Environ Biotechnol 59:499-509. doi:10.1007/s13580-018-0050-y
48
Zribi L, Fatma G, Fatma R, Salwa R, Hassan N, Nejib RM (2009) Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato “Solanum lycopersicum (variety Rio Grande)”. Sci Hortic 120:367-372. doi:10.1016/j.scienta.2008.11.025
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 36
  • No :5
  • Pages :619-629
  • Received Date : 2018-03-21
  • Revised Date : 2018-05-07
  • Accepted Date : 2018-04-25