All Issue

2021 Vol.39, Issue 3 Preview Page

Research Article

June 2021. pp. 402-412
Abstract
References
1
Ballester A-R, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, Fernández-Moreno J-P, Tripodi P, Grandillo S, Martin C, et al. (2010) Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiol 152:71-84. doi:10.1104/pp.109.147322 10.1104/pp.109.14732219906891PMC2799347
2
Blando F, Berland H, Maiorano G, Durante M, Mazzucato A, Picarella ME, Nicoletti I, Gerardi C, Mita G, et al. (2019) Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by 'Sun Black' Tomato Line. Front Nutr 6:133. doi:10.3389/fnut.2019.00133 10.3389/fnut.2019.0013331555653PMC6722425
3
Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936-947. doi:10.1111/j.1365-313X.2010.04384.x 10.1111/j.1365-313X.2010.04384.x21143675
4
Farinha T, Zsögön A, Peres L (2009) Breeding the Tomato Micro-Tom Model System for Ornamental Value. In JM Tuyl, ed, XXIII International Eucarpia Symposium, Section Ornamentals: Colourful Breeding and Genetics 836, Vol 1, Leiden, NL, pp 215-220. doi:10.17660/ActaHortic.2009.836.30 10.17660/ActaHortic.2009.836.30
5
Fujisawa M, Nakano T, Shima Y, Ito Y (2013) A Large-Scale Identification of Direct Targets of the Tomato MADS Box Transcription Factor RIPENING INHIBITOR Reveals the Regulation of Fruit Ripening. Plant Cell 25:371-386. doi:10.1105/tpc.112.108118 10.1105/tpc.112.10811823386264PMC3608766
6
Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y (2012) Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235:1107-1122. doi:10.1007/s00425-011-1561-2 10.1007/s00425-011-1561-222160566
7
Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283-289. doi:10.1016/j.pbi.2007.04.008 10.1016/j.pbi.2007.04.00817442612
8
Ho L (2002) Genetic and Cultivation Manipulation for Improving Tomato Fruit Quality. In B Bieche, ed, VIII International Symposium on the Processing Tomato 613, Vol 1, Istanbul, TR, pp 21-31. doi:10.17660/ActaHortic.2003.613.1 10.17660/ActaHortic.2003.613.1
9
Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A (2009) TOMATO AGAMOUS‐LIKE 1 is a component of the fruit ripening regulatory network. Plant J 60:1081-1095. doi:10.1111/j.1365-313X.2009.04064.x 10.1111/j.1365-313X.2009.04064.x19891701
10
Kang ES, Lee JM (2020) The Fusion Transcript of Phytoene Synthase 1 Controls Yellow Fruit in Tomato. Hortic Sci Technol 38:705-716. doi:10.7235/HORT.20200064 10.7235/HORT.20200064
11
Kang S-I, Hwang I, Goswami G, Jung H-J, Nath UK, Yoo H-J, Lee JM, Nou IS (2017) Molecular Insights Reveal Psy1, SGR, and SlMYB12 Genes are Associated with Diverse Fruit Color Pigments in Tomato (Solanum lycopersicum L.). Molecules 22:2180. doi:10.3390/molecules22122180 10.3390/molecules2212218029292765PMC6149895
12
Kimura S, Sinha N (2008) Tomato (Solanum lycopersicum): A Model Fruit-Bearing Crop. Cold Spring Harb Protoc 2008. doi:10.1101/pdb.emo105 10.1101/pdb.emo10521356708
13
Koskitalo L, Ormrod D (1972) Effects of sub‐optimal ripening temperatures on the color quality and pigment composition of tomato fruit. J Food Sci 37:56-59. doi:10.1111/j.1365-2621.1972.tb03384.x 10.1111/j.1365-2621.1972.tb03384.x
14
Kou X, Liu C, Han L, Wang S, Xue Z (2016) NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening. Mol Genet Genomics 291:1205-1217. doi:10.1007/s00438-016-1177-0 10.1007/s00438-016-1177-026852223
15
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181. doi:10.1016/0888-7543(87)90010-3 10.1016/0888-7543(87)90010-3
16
Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191-204. doi:10.1111/j.1365-313X.2011.04863.x 10.1111/j.1365-313X.2011.04863.x22111515
17
Lee JM, Oh C-S, Yeam I (2015) Molecular markers for selecting diverse disease resistances in tomato breeding programs. Plant Breed Biotechnol 4:308-322. doi:10.9787/PBB.2015.3.4.308 10.9787/PBB.2015.3.4.308
18
Liu G, Li C, Yu H, Tao P, Yuan L, Ye J, Chen W, Wang Y, Ge P, et al. (2020) GREEN STRIPE, encoding methylated TOMATO AGAMOUS‐LIKE 1, regulates chloroplast development and chlorophyll synthesis in fruit. New Phytol. doi:10.1111/nph.16705 10.1111/nph.1670532463946
19
Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X (2019) Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 215:20. doi:10.1007/s10681-019-2353-1 10.1007/s10681-019-2353-1
20
Manoharan RK, Jung H-J, Hwang I, Jeong N, Kho KH, Chung M-Y, Nou I-S (2017) Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation. Hereditas 154:1. doi:10.1186/s41065-016-0023-z 10.1186/s41065-016-0023-z28096780PMC5226094
21
Mizrahi Y, Dostal HC, McGlasson WB, Cherry JH (1975) Transplantation Studies with Immature Fruit of Normal, and rin and nor Mutant Tomatoes. Plant Physiol 55:1120-1122. doi:10.1104/pp.55.6.1120 10.1104/pp.55.6.112016659223PMC541779
22
Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321-4326. doi:10.1093/nar/8.19.4321 10.1093/nar/8.19.43217433111PMC324241
23
Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, et al. (2011) Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions. Plant Physiol 157:405-425. doi:10.1104/pp.111.175463 10.1104/pp.111.17546321795583PMC3165888
24
Qian M, Sun Y, Allan AC, Teng Y, Zhang D (2014) The red sport of 'Zaosu' pear and its red-striped pigmentation pattern are associated with demethylation of the PyMYB10 promoter. Phytochemistry 107:16-23. doi:10.1016/j.phytochem.2014.08.001 10.1016/j.phytochem.2014.08.00125168359
25
Rick CM, Butler L (1956) Cytogenetics of the Tomato. In M Demerec, ed, Advances in Genetics, Vol 8. Elsevier, Amsterdam, NL, pp 267-382. doi:10.1016/S0065-2660(08)60504-0 10.1016/S0065-2660(08)60504-0
26
Rick CM, Yoder JI (1988) CLASSICAL AND MOLECULAR GENETICS OF TOMATO: HIGHLIGHTS AND PERSPECTIVES. Annu Rev Genet 22:281-300. doi:10.1146/annurev.ge.22.120188.001433 10.1146/annurev.ge.22.120188.0014333071250
27
Shin JH, Yoo HJ, Yeam I, Lee JM (2019) Distinguishing two genetic factors that control yellow fruit color in tomato. Hortic Environ Biotechnol 60:59-67. doi:10.1007/s13580-018-0093-0 10.1007/s13580-018-0093-0
28
Telias A, Lin-Wang K, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:93. doi:10.1186/1471-2229-11-93 10.1186/1471-2229-11-9321599973PMC3127826
29
Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635. doi:10.1038/nature11119 10.1038/nature1111922660326PMC3378239
30
Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, et al. (2009) Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1. Plant Cell 21:3041-3062. doi:10.1105/tpc.109.066936 10.1105/tpc.109.06693619880793PMC2782289
31
Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science 296:343-346. doi:10.1126/science.1068181 10.1126/science.106818111951045
32
Vu AT, Lee JM (2019) Genetic variations underlying anthocyanin accumulation in tomato fruits. Euphytica 215:196. doi:10.1007/s10681-019-2519-x 10.1007/s10681-019-2519-x
33
Wang N, Chen H, Nonaka S, Sato-Izawa K, Kusano M, Ezura H (2018) Ethylene biosynthesis controlled by NON-RIPENING: A regulatory conflict between wounding and ripening. Plant Physiol Biochem 132:720-726. doi:10.1016/j.plaphy.2018.07.034 10.1016/j.plaphy.2018.07.03430150109
34
Yoo HJ, Park WJ, Lee G-M, Oh C-S, Yeam I, Won D-C, Kim CK, Lee JM (2017) Inferring the Genetic Determinants of Fruit Colors in Tomato by Carotenoid Profiling. Molecules 22:764. doi:10.3390/molecules22050764 10.3390/molecules2205076428481314PMC6154295
35
Zamir D, Selilaben-David T, Rudich J, Juvik JA (1984) Frequency distributions and linkage relationships of 2-tridecadone in interspecific segregating generations of tomato. Euphytica 33:481-488. doi:10.1007/BF00021148 10.1007/BF00021148
36
Zhai R, Wang Z, Yang C, Lin-Wang K, Espley R, Liu J, Li X, Wu Z, Li P, et al. (2019) PbGA2ox8 induces vascular-related anthocyanin accumulation and contributes to red stripe formation on pear fruit. Hortic Res 6:1-13. doi:10.1038/s41438-019-0220-9 10.1038/s41438-019-0220-931814990PMC6885050
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :3
  • Pages :402-412
  • Received Date :2020. 12. 29
  • Revised Date :2021. 02. 01
  • Accepted Date : 2021. 02. 09