All Issue

2023 Vol.41, Issue 4 Preview Page

Research Article

31 August 2023. pp. 379-389
Baptista F, Bailey B, Randall J, Meneses J (1999) Greenhouse ventilation rate: Theory and measurement with tracer gas techniques. J Agric Eng Res 72:363-374. doi:10.1006/jaer.1998.0381 10.1006/jaer.1998.0381
Besford RT, Ludwig LJ, Withers AC (1990) The greenhouse effect: acclimation of tomato plants growing in high CO2, photosynthesis and ribulose-1,5-bisphosphate carboxylase protein. J Exp Bot 41:925-931. doi:10.1093/jxb/41.8.925 10.1093/jxb/41.8.925
Bonan G (2019) Climate Change and Terrestrial Ecosystem Modeling. (1st ed.). Cambridge: Cambridge University Press. doi:10.1017/9781107339217 10.1017/9781107339217
Chalabi ZS, Biro A, Bailey BJ, Aikman DP, Cockshull KE (2002) Optimal control strategies for carbon dioxide enrichment in greenhouse tomato crops. Part 1. Using pure carbon dioxide. Biosyst Eng 81:421-431. doi:10.1006/bioe.2001.0039 10.1006/bioe.2001.0039
Choi EY, Jeong YA, An SH, Jang DC, Lee DS, Kwon JK, Woo YH (2021) Comparison of measured and calculated carboxylation rate, electron transfer rate and photosynthesis rate response to different light intensity and leaf temperature in semi-closed greenhouse with carbon dioxide fertilization for tomato cultivation. J Bio-Env Con 30:401-409. doi:10.12791/KSBEC.2021.30.4.401 10.12791/KSBEC.2021.30.4.401
Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration-a model that includes a laminar boundary-layer. Agric For Meteorol 54:107-136 doi:10.1016/0168-1923(91)90002-8 10.1016/0168-1923(91)90002-8
Esmeijer M (1999) CO2 in greenhouse horticulture. Aalsmeer/Naaldwijk:Applied Plant Research, pp 9-117
Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. doi:10.1007/BF00386231 10.1007/BF0038623124306196
Ferentinos KP, Albright LD, Ramani DV (2000) Optimal light integral and carbon dioxide concentration combinations for lettuce in ventilated greenhouses. J Agric Engng Res 77:309-315. doi:10.1006/jaer.2000.0593 10.1006/jaer.2000.0593
Geelen PAM, Voogt JO, Weel PA van (2018) Plant Empowerment:The basic principles., U.S.
Ioslovich I, Seginer I, Gutman PO, Borshchevsky M (1995) Suboptimal CO2 enrichment of greenhouses. J Agric Eng Res 60:117-136. doi:10.1006/jaer.1995.1006 10.1006/jaer.1995.1006
Jeong YA, Jang DC, Kwon JK, Kim DH, Choi EY (2022) Analysis of spatial and vertical variability of environmental parameters in a greenhouse and comparison of carbon dioxide concentration in two different types of greenhouses. J Bio-Env Con 31:221-229. doi:10.12791/KSBEC.2022.31.3.221 10.12791/KSBEC.2022.31.3.221
Keutgen N, Chen K, Lenz F (1997) Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J Plant Physiol 150:395-400. doi:10.1016/S0176-1617(97)80088-0 10.1016/S0176-1617(97)80088-0
Kläring HP, Hauschild C, Heißner A, Bar-Yosef B (2007) Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agric For Meteorol 143:208-216. doi:10.1016/j.agrformet.2006.12.002 10.1016/j.agrformet.2006.12.002
Koch GW, Mooney HA (1996) Response of terrestrial ecosystems to elevated CO2: a synthesis and summary. In: Mooney, G.W.K.A. Ed, Carbon Dioxide and Terrestrial Ecosystems. Academic Press, San Diego, pp 415-429 10.1016/B978-012505295-5/50023-9
Morita R, Inoue K, Ikeda KI, Hatanaka T, Misoo S, Fukayama H (2016) Starch content in leaf sheath controlled by CO2-responsive CCT protein is a potential determinant of photosynthetic capacity in rice. J Plant Cell Physiol 57:2334-2341 doi:10.1093/pcp/pcw142 10.1093/pcp/pcw14227519315
Nederhoff EM (1994) Effects of CO2 Concentration on Photosynthesis, Transpiration and Production of Greenhouse Fruit Vegetable Crops. PhD Thesis. Wageningen, The Netherlands, p 213
Nederhoff EM, Vegter JG (1994) Photosynthesis of stands of tomato, cucumber and sweet pepper measured in greenhouse under various CO2 concentrations. Ann Bot 73:353-361. doi:10.1006/anbo.1994.1044 10.1006/anbo.1994.1044
Pan TH, Ding JJ, Qin GG, Wang YL, Xi LJ, Yang JW, Li JM, Zhang J, Zou ZR (2019). Interaction of supplementary light and CO2 enrichment improves growth, photosynthesis, yield, and quality of tomato in autumn through spring greenhouse production. Hortsci 54:246-252. doi:10.21273/HORTSCI13709-18 10.21273/HORTSCI13709-18
Peet MM, Willits DH (1987) Greenhouse CO2 enrichment alternatives effects of increasing concentration or duration of enrichment on cucumber yields. J Am Soc Hortic Sci 112:236-241. doi:10.21273/JASHS.112.2.236 10.21273/JASHS.112.2.236
Sanchez-Guerrero MC, Lorenzo P, Medrano E, Castilla N, Soriano T, Baille (2005) Effect of variable CO2 enrichment on greenhouse production in mild winter climates. Agric For Meteorol 132:244-252. doi:10.1016/j.agrformet.2005.07.014 10.1016/j.agrformet.2005.07.014
Slack G, Hand DW (1985) The effect of winter and summer CO2 enrichment on the growth and fruit yield of glasshouse cucumber. J Hortic Sci 60:507-516. doi:10.1080/14620316.1985.11515658 10.1080/14620316.1985.11515658
Smith EW, Tolbert NE, Ku HS (1976) Variables affecting the CO2 compensation point. Plant Phys 58:143-146. doi:10.1104/pp.58.2.143 10.1104/pp.58.2.14316659635PMC542200
Trigui M, Barrington S, Gauthier L (2001) A strategy for green- house climate control. Part I. Model development. J Agric Eng Res 78:407-413. doi:10.1006/jaer.2000.0647 10.1006/jaer.2000.0647
Vermeulen P (2014) Alternative sources of CO2 for the greenhouse horticulture. In Proceedings of the 2nd International Symposium on Energy Challenges and Mechanics, Aberdeen, UK
Yelle S, Beeson RC, Trudel MJ, Gosselin A (1989) Acclimation of 2 tomato species to high atmospheric CO2. II. Ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase. Plant Physiol 90:1473-1477. doi:10.1104/pp.90.4.1473 10.1104/pp.90.4.147316666953PMC1061913
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 41
  • No :4
  • Pages :379-389
  • Received Date : 2023-01-31
  • Revised Date : 2023-02-15
  • Accepted Date : 2023-03-15