Research Article
Cho SH, Lee GS, Hwang JW (2020) Drone-based Vegetation Index Analysis Considering Vegetation Vitality. Journal of the KAGIS 23:21-35. https://doi.org/10.11108/kagis.2020.23.2.021
10.11108/kagis.2020.23.2.021Environmental Geographic Information Service (2023) Land Cover Map. Available via https://egis.me.go.kr/. asp Accessed 1 August 2023
Ghassemi B, Dujakovic A, Żółtak M, Immitzer M, Atzberger C, Vuolo F (2022) Designing a European-Wide Crop Type Mapping Approach Based on Machine Learning Algorithms Using LUCAS Field Survey and Sentinel-2 Data. Remote Sens 14:541. https://doi.org/10.3390/rs14030541
10.3390/rs14030541Ji S, Zhang C, Xu A, Shi Y, Duan Y (2018) 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens 10:75. https://doi.org/10.3390/rs10010075
10.3390/rs10010075Jin H, Eklundh L (2014) A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ 152:623-525. https://doi.org/10.1016/j.rse.2014.07.010
10.1016/j.rse.2014.07.010Karki S, Basak JK, Paudel B, Deb NC, Kim NE, Kook JH, Kang MY, Kim TH (2024) Classification of strawberry ripeness stages using machine learning algorithms and colour spaces. Hortic. Environ. Biotechnol 65:337-354. https://doi.org/10.1007/s13580-023-00559-2
10.1007/s13580-023-00559-2Lillesand T, Kiefer WR, Chipman J (2015) Remote Sensing and Image Interpretation, Ed 7, Wiley, New York
Ministry of Agriculture, Food and Rural Affairs (2022) Agricultural Crop Production Statistical Report, report, 11-1543000-000128-10, Republic of Korea
Ministry of Agriculture, Food and Rural Affairs (2023) Agricultural Management Registration Information Inquiry Service, Nonsan 2022 crop cultivation distribution map. Available via https://uni.agrix.go.kr/docs7/biOlap/dashBoard.do. asp Accessed 1 August 2023
Ministry of Environment (2023) Environmental Geographic Information Service, Subdiviision Land Cover Map, Abailable via https://egis.me.go.kr/intro/land.do. asp Accessed 1 August 2023
Nonsan City Hall (2023) General status. Available via https://nonsan.go.kr/. asp Accessed 1 August 2023
Segarra J, Buchaillot ML, Araus JL, Kefauver SC (2020) Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 10:641. https://doi.org/10.3390/agronomy10050641
10.3390/agronomy10050641Sonobe R, Yamaya Y, Tani H, Wang X, Kobayashi N, Mochizuki KI (2018) Crop classification from Sentinel-2 derived vegetation indices using ensemble learning. J. Appl. Remote Sens 12:026019. https://doi.org/10.1117/1.JRS.12.026019
10.1117/1.JRS.12.026019The Ministry of Land, Infrastructure and Transport (2023) knowledge space. Available via http://www.nsdi.go.kr/lxportal/?menuno=4064. asp Accessed 1 August 2023
Yao J, Wu J, Xiao C, Zhang Z, Li J (2022) The Classification Method Study of Crops Remote Sensing with Deep Learning, Machine Learning, and Google Earth Engine. Remote Sens https://doi.org/10.3390/rs14122758
10.3390/rs14122758Zhang X, Sun Y, Shang K, Zhang L (2016) Crop Classification Based on Feature Band Set Construction and Object-Oriented Approach Using Hyperspectral Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9:4117-4128. https://doi.org/10.1109/JSTARS.2016.2577339
10.1109/JSTARS.2016.2577339- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 43
- No :3
- Pages :388-398
- Received Date : 2023-10-04
- Revised Date : 2024-06-11
- Accepted Date : 2024-06-12
- DOI :https://doi.org/10.7235/HORT.20250006