All Issue

2021 Vol.39, Issue 5 Preview Page

Research Article

31 October 2021. pp. 583-592
Abstract
References
1
Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, Fahad S, Han Q (2019) Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 7:27793. doi:10.7717/peerj.7793 10.7717/peerj.779331616591PMC6791350
2
Arnao MB, Hernandez-Ruiz J (2007) Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L., J Pineal Res 42:147-152. doi:10.1111/j.1600-079X.2006.00396.x 10.1111/j.1600-079X.2006.00396.x17286746
3
Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. Crit Rev Biochem Mol Biol 22:111-180 10.3109/104092387090837383315461
4
Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. doi:10.1007/BF00018060 10.1007/BF00018060
5
Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229-1240. doi:10.1093/jxb/ert375 10.1093/jxb/ert37524253197
6
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3 10.1016/0003-2697(76)90527-3
7
Buttar ZA, Wu SN, Arnao MB, Wang C, Ullah I, Wang C (2020) Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9:809. doi:10.3390/plants9070809 10.3390/plants907080932605176PMC7412093
8
Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Phsyiol 166:324-328. doi:10.1016/j.jplph.2008.06.002 10.1016/j.jplph.2008.06.00218706737
9
Dai L, Lia J, Harmens H, Zheng X, Zhang C (2020) Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiol Biochem 149:86-95. doi:10.1016/j.plaphy.2020.01.039 10.1016/j.plaphy.2020.01.03932058897
10
Dhindsa RS, Plumb‐Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93-101. doi:10.1093/jxb/32.1.93 10.1093/jxb/32.1.93
11
Foyer CH, Lelandais M, Kunert KJ (1994) Photo oxidative stress in plants. Physiologia lantarum 92:696-717. doi:10.1111/j.1399-3054.1994.tb03042.x 10.1111/j.1399-3054.1994.tb03042.x
12
Galano A, Tan DX, Reiter RJ (2011) Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res 51:1-16. doi:10.1111/j.1600-079X.2011.00916.x 10.1111/j.1600-079X.2011.00916.x21752095
13
Hardeland R (2009) Melatonin signaling mechanisms of a pleiotropic agent. Biofactors 35:183-192. doi:10.1002/biof.23 10.1002/biof.2319449447
14
Hernandez-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137-142. doi:10.1111/j.1600-079X.2005.00226.x 10.1111/j.1600-079X.2005.00226.x16098090
15
Hu KD, Hu LY, Li YH, Zhang H (2007) Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul 53:173-183. doi:10.1007/s10725-007-9216-9 10.1007/s10725-007-9216-9
16
Ibrahim MF, Elbar OHA, Farag R, Hikal M, El-Kelish A, El-Yazied AA, Alkahtani J, El-Gawad HHA (2020) Melatonin Counteracts drought Induced oxidative damage and stimulates growth, productivity and fruit quality properties of tomato plants. Plants 9:1276. doi:10.3390/plants9101276 10.3390/plants910127632998250PMC7601691
17
Jahan MS, Shu S, Wang Y, Chen Z, He M, Tao M, Sun J, Guo S (2019) Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis. BMC Plant Boil 19:414. doi:10.1186/s12870-019-1992-7 10.1186/s12870-019-1992-731590646PMC6781414
18
Kang KS, Lim CJ, Han TJ, Kim JC, Jin CD (1998) Activation of ascorbate-glutathione cycle in Arabidopsis leaves in responses to aminotriazol. J Plant Biol 41:155-161. doi:10.1007/BF03030248 10.1007/BF03030248
19
Kim SK, Lee JH, Lee HS, Mun BH, Lee SG (2017) Effect of soil water content on growth, photosynthetic rate, and stomatal conductance of Kimchi cabbage at the early growth stage after transplanting. Protected Hortic Plant Fac 26:151:157. doi:10.12791/KSBEC.2017.26.3.151 10.12791/KSBEC.2017.26.3.151
20
Kolar J, Johnson CH, Machackova I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiol Plant 118:605-612. doi:10.1034/j.1399-3054.2003.00114.x 10.1034/j.1399-3054.2003.00114.x
21
Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Bio Chem 283:34197-34203. doi:10.1074/jbc.M806337200 10.1074/jbc.M80633720018852264PMC2590703
22
Lee HJ, Kim JS, Lee SG, Kim SK, Mun BH, Choi CS (2017) Glutamic acid foliar application enhances antioxidant enzyme activities in Kimchi cabbages leaves treated with low air temperature. Hortic Sci Technol 35:700-706 10.12972/kjhst.20170074
23
Lee HJ, Lee JH, Lee SG, An SW, Lee HS, Choi CK, Kim SK (2019) Foliar application of biostimulants affects physiological responses and improves heat stress tolerance in Kimchi cabbage. Hortic Environ Biotech 60:841-851. doi:10.1007/s13580-019-00193-x 10.1007/s13580-019-00193-x
24
Lee JG, Lee JW, Park SH, Jang YA, Oh SS, Seo TC, Yoon HK, Um YC (2011) Effect of low night-time temperature during seedling stage on growth of spring Kimchi cabbage. J Bio-Environ Control 20:326-332
25
Lee SG, Moon JH, Jang YA, Lee WM, Cho IH, Kim SY, Ko KD (2009) Photosynthetic charateristics and cellular tissue of Kimchi cabbage are affected by temperature and CO2 concentration. J Bio-Environ Control 18:148-152
26
Lee SG, Seo TC, Jang YA, Lee JG, Nam CW, Choi CS, Yeo KH, Um YC (2012) Prediction of Kimchi cabbage yield as affected by planting date and nitrogen fertilization for spring production. J Bio-Environ Control 21:271-275
27
Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio R, Nortes PA, Mittler R, et al. (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:353. doi:10.3390/molecules23030535 10.3390/molecules2303053529495548PMC6017353
28
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410. doi:10.1016/S1360-1385(02)02312-9 10.1016/S1360-1385(02)02312-9
29
Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annu Rev Plant Biol 61:443-462. doi:10.1146/annurev-arplant-042809-112116 10.1146/annurev-arplant-042809-11211620192746
30
Oh SJ, Moon KH, Son IC, Song EY, Moon YE, Koh SC (2014) Growth, photosynthesis and chlorophyll fluorescence of Kimchi cabbage in response to high temperature. Korean J Hortic Sci Technol 32:318-329. doi:10.7235/hort.2014.13174 10.7235/hort.2014.13174
31
Qi ZY, Wang KX, Yan MY, Kanwar MK, Li DY, Wijaya L, Alyemeni MN, Ahmad P, Zhou J (2018) Melatonin alleviates high temperature- induced pollen abortion in solanum lycopersicum. Molecules 23:386. doi:10.3390/molecules2302038623 10.3390/molecules2302038629439470PMC6017144
32
Rietjens IMCM, Boersma MG, Haan LD, Spenkelink B, Awad HM, Cnubben NHP, Zanden JJV, Woude HVE, Alink GM, et al. (2002) The pro-oxidant chemistry of the natural antioxidants vitamin C, vitamin E, carotenoids and flavonoids. Environ Toxicol Pharmacol 11:321-333. doi:10.1016/S1382-6689(02)00003-0 10.1016/S1382-6689(02)00003-0
33
Rizhsky L, Liang H, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143-1151. doi:10.1104/pp.006858 10.1104/pp.00685812427981PMC166635
34
Siddiqui MH, Alamri S, Al-Khaishany MY, Khan MN, Al-Amri A, Ali HM, Alaraidh IA, Alsahli AA (2019) Exogenous melatonin counteracts NaCl-induced damage by regulating the antioxidant system, proline and carbohydrates metabolism in tomato seedlings. Int J Mol Sci 20:353. doi:10.3390/ijms20020353 10.3390/ijms2002035330654468PMC6358940
35
Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32-43. doi:10.1111/nph.12797 10.1111/nph.1279724720847
36
Tan DX, Manchester LC, Di MP, Martinez GR, Prado FM, Reiter RJ (2007) Novel rhythms of N-1-acetyl-N-2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21:1724-1729. doi:10.1096/fj.06-7745com 10.1096/fj.06-7745com17314136
37
Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance if melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137-159. doi:10.1159/000014635 10.1159/00001463510899700
38
Tan XL, Zhao TT, Shan W, Kuang JF, Lu WJ, Su XG, Tao NG, Lakshmanan P, Chen JY (2020) State key laboratory for conservation and utilization of subtropical agro-bioresources/guangdong provincial key laboratory of melatonin delays leaf senescence of postharvest Kimchi flowering cabbage through ROS homeostasis. Food Res Inter 138:109790. doi:10.1016/j.foodres.2020.109790 10.1016/j.foodres.2020.10979033288176
39
Xu W, Cai SY, Zhang Y, Wang Y, Ahammed GJ, Xia XJ, Shi K, Zhou YH, Yu JQ, et al. (2016) Melatonin enhances thermotolerance by promoting cellular protein protection in tomato plants. J Pineal Res 61:457-469. doi:10.1111/jpi.12359 10.1111/jpi.1235927484733
40
Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X (2016) Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiol Plant 38:48. doi:10.1007/s11738-015-2045-y 10.1007/s11738-015-2045-y
41
Zandalinas SI, Rivero RM, Martinez V, Gomez-Cadenas A, Arbona V (2016) Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant Biol 16:105. doi:10.1186/s12870-016-0791-7 10.1186/s12870-016-0791-727121193PMC4848825
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :5
  • Pages :583-592
  • Received Date : 2021-02-24
  • Revised Date : 2021-04-23
  • Accepted Date : 2021-05-24