All Issue

2022 Vol.40, Issue 6 Preview Page

Research Article

31 December 2022. pp. 586-594
Abstract
References
1
Bae JH, Park SY, Oh MM (2017) Supplemental irradiation with far-red light-emitting diodes improves growth and phenolic contents in Crepidiastrum denticulatium in a plant factory with artificial lighting. Hortic Environ Biotechnol 58:357-366. doi:10.1007/s13580-017-0331-x 10.1007/s13580-017-0331-x
2
Berghage RD, Erwin JE, Heins RD (1991) Photoperiod influences leaf chlorophyll content in chrysanthemum grown with a negative DIF temperature regime. HortScience 26:92
3
Cha MK, Kim JS, Cho YY (2012) Growth response of lettuce to various levels of EC and light intensity in plant factory. Protected Hortic Plant Fac 21:305-311. doi:10.12791/KSBEC.2012.21.4.305 10.12791/KSBEC.2012.21.4.305
4
Choi MK, Baek GY, Kwon SJ, Yoon YC, Kim HT (2014) Effect of LED light wavelength on lettuce growth, vitamin C and anthocyanin contents. Protected Hortic Plant Fac 23:19-25. doi:10.12791/KSBEC.2014.23.1.019 10.12791/KSBEC.2014.23.1.019
5
Dorais M, Gosselin A, Trudel MJ (1991) Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Sci Hortic 45:225-234. doi:10.1016/0304-4238(91)90067-9 10.1016/0304-4238(91)90067-9
6
Dougher TAO, Bugbee B (2001) Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Phytochem. Photobiol. 73:199-207. doi:10.1562/0031-8655(2001)073&lt;0199:DITROW&gt;2.0.CO;2 10.1562/0031-8655(2001)073<0199:DITROW>2.0.CO;211272735
7
Faust JE, Holcombe V, Rajapakse NC, Layne DR (2005) The effect of daily light integral on bedding plant growth and flowering. HortScience 40:645-649. doi:10.21273/HORTSCI.40.3.645 10.21273/HORTSCI.40.3.645
8
Ferrante A, Incrocci L, Serra G (2008) Quality changes during storage of fresh-cut or intact swiss chard leafy vegetables. J Food Agric Environ 6:132-134
9
Fuleki JE, Francis FJ (1968) Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci 33:72-77. doi:10.1111/j.1365-2621.1968.tb00887.x 10.1111/j.1365-2621.1968.tb00887.x
10
Gardner FP, Pearce RB, Mitchell RL (2020a) Photosynthesis and respiration. In RGB Press, ed, Physiology of crop plants, Translated by Nam SY, Ed 1, Seoul, Korea, pp 101-135
11
Gardner FP, Pearce RB, Mitchell RL (2020b) Photosynthesis and respiration. In RGB Press, ed, Physiology of crop plants, Translated by Nam SY, Ed 1, Seoul, Korea, pp 120-126
12
Goto E (2012) Plant production in a closed plant factory with artificial lighting. VII International Symposium on Light in Horticultural Systems 956:37-49. doi:10.17660/ActaHortic.2012.956.2 10.17660/ActaHortic.2012.956.2
13
Guo X, Shakeel M, Wang D, Qu C, Yang S, Ahmad S, Song Z (2022) Metabolome and transcriptome profiling unveil the mechanisms of light-induced anthocyanin synthesis in rabbiteye blueberry (vaccinium ashei: Reade). BMC Plant Biol 22:223-236. doi:10.1186/s12870-022-03585-x 10.1186/s12870-022-03585-x35488209PMC9052483
14
He D, Yan Z, Sun X, Yang P (2020) Leaf development and energy yield of hydroponic sweetpotato seedlings using single-node cutting as influenced by light intensity and LED spectrum. J Plant Physiol 254:153274-153282. doi:10.1016/j.jplph.2020.153274 10.1016/j.jplph.2020.15327432961477
15
Heo JW, Kang DH, Bang HS, Hong SG, Chun C, Kang KK (2012) Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Hortic Sci Technol 30:6-12. doi:10.7235/hort.2012.11118 10.7235/hort.2012.11118
16
Hoagland DR, Aron DI (1950) The water-culture method for growing plants without plant. 3rd ed. Univ. Calif. Agric. Exp. Stat. Circular 347, CA, USA
17
Hwang YH, Park Jem Chang YH, An JU, Yoon HS, Hong KP (2016) Effects of LED (Light Emitting Diode) photoperiod and light intensity on growth and yield of Taraxacum coreanum Nakai in a plant factory. Protected Hortic Plant Fac 4:232-239. doi:10.12791/KSBEC.2016.25.4.232 10.12791/KSBEC.2016.25.4.232
18
Islam MS, Yoshimoto M, Terahara N, Yamakawa O (2002) Anthocyanin compositions in sweetpotato (Ipomoea batatas L.) leaves. Biosci Biotechnol Biochem 66:2483-2486. doi:10.1271/bbb.66.2483 10.1271/bbb.66.248312506993
19
Jeong HK, Sung JH, Lee HJ (2020) Analysis of social demand for countermeasures in response to extreme weather events in Korean agricultural sector. J Climate Change Res 11:235-246. doi:10.15531/KSCCR.2020.11.4.235 10.15531/KSCCR.2020.11.4.235
20
Kelly N, Choe D, Meng Q, Runkle E (2020) Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci Hortic 272:109565-109579. doi:10.1016/j.scienta.2020.109565 10.1016/j.scienta.2020.109565
21
Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience 39:1617-1622. doi:10.21273/HORTSCI.39.7.1617 10.21273/HORTSCI.39.7.161715770792
22
Kim HM, Kang JH, Jeong BR, Hwang SJ (2016) Light quality and photoperiod affect growth of sowthistle (Ixeris dentata Nakai) in a closed-type plant production system. Hortic Sci Technol 34:67-76. doi:10.12972/kjhst.20160005 10.12972/kjhst.20160005
23
Kim YG, Kim HM, Kim HM, Lee HR, Jeong BR, Lee HJ, Kim HJ, Hwang SJ (2021) Growth and phytochemicals of ice plant (Mesembryanthemum crystallinum L.) as affected by various combined ratios of red and blue LEDs in a closed-type plant production system. J Appl Res Med Aromat Plants 20:100267-100274. doi:10.1016/j.jarmap.2020.100267 10.1016/j.jarmap.2020.100267
24
Kitaya Y, Niu G, Kozai T, Ohashi M (1998) Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience 33:988-991. doi:10.21273/HORTSCI.33.6.988 10.21273/HORTSCI.33.6.988
25
Koontz HV, Prince RP (1986) Effect of 16 and 24 hours daily radiation (light) on lettuce growth. HortScience 21:123-124
26
Kozai T, Niu G (2019) Criticisms of PFALs and responses to them. K Toyoki, N Genhua, T Michiko, eds, Plant factory: an indoor vertical farming system for efficient quality food production, Ed 2, Academic press, Cambridge, USA, pp 21-30
27
LEDTonic (2019) DLI (daily light integral) chart - understand your plants' PPFD & photoperiod requirements. Available via https://www.ledtonic.com/blogs/guides/dli-daily-light-integral-chart-understand-your-plants-ppfd-photoperiod-requirements Accessed 02 September 2022
28
Lee JG, Oh SS, Cha SH, Jang YA (2010) Effects of red/blue light ratio and short-term light quality conversion on growth and anthocyanin contents of baby leaf lettuce. J Bio-Env Cont 19:351-359
29
Lee MJ, Park SY, Oh MM (2015) Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Hortic Environ Biotechnol 56:186-194. doi:10.1007/s13580-015-0130-1 10.1007/s13580-015-0130-1
30
Lee SG, Choi CS, Lee JG, Jang YA, Nam CW, Yeo KH, Lee HJ, Um YC (2012) Effects of different EC in nutrient solution on growth and quality of red mustard and pak-choi in plant factory. J Bio-Env Cont 21:322-326. doi:10.12791/KSBEC.2012.21.4.322 10.12791/KSBEC.2012.21.4.322
31
Ma Y, Ma X, Gao X, Wu W, Zhou B (2021) Light induced regulation pathway of anthocyanin biosynthesis in plants. Int J Mol Sci 22:11116-11131. doi:10.3390/ijms222011116 10.3390/ijms22201111634681776PMC8538450
32
Park JE, Park YG, Jeong BR, Hwang SJ (2012) Growth and anthocyanin content of lettuce as affected by artificial light source and photoperiod in a closed-type plant production system. Korean J Hortic Sci Technol 30:673-679. doi:10.7235/hort.2012.12020 10.7235/hort.2012.12020
33
Park MH, Lee YB (1999) Effects of light intensity and nutrient level on the growth and quality of leaf lettuce in a plant factory. J Bio-Env Con 8:108-114
34
Park MW, Kang MS, Yun YW, Hong SR, Bae KY, Baek JB (2021) Particle swarm optimization-based peak shaving scheme using ESS for reducing electricity tariff. J Inst Korean Electr Electron Eng 25:388-398
35
RDA (Rural Development Administration) (2018) Baby leaf vegetables. In RDA Press, ed, Leafy vegetables, Ed 4, Seoul, Korea, pp 256-257
36
Rezai S, Etemadi N, Nikbakht A, Yousefi M, Majidi MM (2018) Effect of light intensity on leaf morphology, photosynthetic capacity, and chlorophyll content in sage (Salvia officinalis L.). Hortic Sci Technol 36:46-57. doi:10.12972/kjhst.20180006 10.12972/kjhst.20180006
37
Salisbury FB, Ross CW (1992) Plant physiology. 4th ed. Wadsworth, Belmont, CA, USA, pp 27-65
38
Sato K, Nakayama M, Shigeta J (1996) Culturing conditions affecting the production of anthocyanin in suspended cell cultures of strawberry. Plant Sci 113:91-98. doi:10.1016/0168-9452(95)05694-7 10.1016/0168-9452(95)05694-7
39
Shimizu T, Nakamura M (1993) Purple sweetpotato color. In Natural food colorants, ed. Fuji, M. Kohrin Corp., Tokyo, Japan, pp. 224-225
40
Takatsuji M (2008) Plant factory. World Science Publishment, Seoul, Korea, pp 8-13
41
Um YC, Oh SS, Lee JG, Kim SY, Jang YA (2010) The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J Bio-Environ Con 19:333-342
42
Yan Z, He D, Niu G, Zhai H (2019) Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci Hortic 248:138-144. doi:10.1016/j.scienta.2019.01.002 10.1016/j.scienta.2019.01.002
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 40
  • No :6
  • Pages :586-594
  • Received Date :2022. 06. 22
  • Revised Date :2022. 09. 26
  • Accepted Date : 2022. 10. 21