All Issue

2023 Vol.41, Issue 1 Preview Page

Research Article

28 February 2023. pp. 11-26
Abstract
References
1
Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258-270. doi:10.1111/j.1365-3040.2007.01641.x 10.1111/j.1365-3040.2007.01641.x17263773
2
Almansa S, Hernández F, Legua P, Nicolás‐Almansa M, Amorós A (2016) Physico‐chemical and physiological changes during fruit development and on‐tree ripening of two Spanish jujube cultivars (Ziziphus jujuba Mill.). J Sci Food Agric 96:4098-4105. doi:10.1002/jsfa.7610 10.1002/jsfa.761026748666
3
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1-15. doi:10.1104/pp.24.1.1 10.1104/pp.24.1.1
4
Boureima S, Oukarroum A, Diouf M, Cisse N, Van Damme P (2012) Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environ Exp Bot 81:37-43. doi:10.1016/j.envexpbot.2012.02.015 10.1016/j.envexpbot.2012.02.015
5
Brodribb TJ, McAdam SA, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water‐use efficiency among land plants. New Phytol 183:839-847. doi:10.1111/j.1469-8137.2009.02844.x 10.1111/j.1469-8137.2009.02844.x19402882
6
Callaway RM, DeLucia EH, Thomas EM, Schlesinger WH (1994) Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes. Oecologia 98:159-166. doi:10.1007/BF00341468 10.1007/BF0034146828313973
7
Cen YP, Sage RF (2005) The regulation of rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979-990. doi:10.1104/pp.105.066233 10.1104/pp.105.06623316183840PMC1256011
8
Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551-560. doi:10.1016/j.plantsci.2012.09.006 10.1016/j.plantsci.2012.09.00623116674
9
Choi HG, Jeong HJ (2020) Comparison of Chlorophyll Fluorescence and Photosynthesis of Two Strawberry Cultivars in Response to Relative Humidity. Hortic Sci Technol 38:66-77. dio:10.7235/HORT.20200007
10
Cruz ZN, Rodríguez P, Galindo A, Torrecillas E, Ondoño S, Mellisho CD, Torrecillas A (2012) Leaf mechanisms for drought resistance in Zizyphus jujuba trees. Plant Sci 197:77-83. doi:10.1016/j.plantsci.2012.09.006 10.1016/j.plantsci.2012.09.00623116674
11
Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus-the protective role of polyamines. Biochim Biophys Acta Bioenerg 1767:272-280. doi:10.1016/j.bbabio.2007.02.020 10.1016/j.bbabio.2007.02.02017408588
12
Dudeja SS, Chaudhary P (2005) Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants. Photosynthetica 4:253-259. doi:10.1007/s11099-005-0041-y 10.1007/s11099-005-0041-y
13
Ethier GH, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27:137-153. doi:10.1111/j.1365-3040.2004.01140.x 10.1111/j.1365-3040.2004.01140.x
14
Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317-345. doi:10.1146/annurev.pp.33.060182.001533 10.1146/annurev.pp.33.060182.001533
15
Flexas J, Scoffoni C, Gago J, Sack L (2013) Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. J Exp Bot 64:3965-3981. doi:10.1093/jxb/ert319 10.1093/jxb/ert31924123453
16
Giorio P, Sellami MH (2021) Polyphasic OKJIP Chlorophyll a Fluorescence Transient in a Landrace and a Commercial Cultivar of Sweet Pepper (Capsicum annuum L.) under Long-Term Salt Stress. Plants 10:887. doi:10.3390/plants10050887 10.3390/plants1005088733924904PMC8145502
17
Guha A, Sengupta D, Reddy AR (2013) Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. J Photochem Photobiol B 119:71-83. doi:10.1016/j.jphotobiol.2012.12.006 10.1016/j.jphotobiol.2012.12.00623357190
18
Guo S, Duan JA, Qian D, Tang Y, Wu D, Su S, Wang H, Zhao Y (2015) Content variations of triterpenic acid, nucleoside, nucleobase and sugar in jujube (Ziziphus jujuba) fruit during ripening. Food Chem 167:468-474. doi:10.1016/j.foodchem.2014.07.013 10.1016/j.foodchem.2014.07.01325149013
19
Han SH, Kim DH, Kim GN, Lee JC (2011) Changes on Growth, Photosynthesis and Pigment contents of the Maackia amurensis and Viburnum opulus var. calvescens under Enhanced Temperature and CO2 Concentration. Korean J Agric For Meteorol 13:115-122. doi:10.5532/KJAFM.2011.13.3.115 10.5532/KJAFM.2011.13.3.115
20
Hernández F, Noguera-Artiaga L, Burló F, Wojdyło A, Carbonell-Barrachina ÁA, Legua P (2016) Physico‐chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits. J Sci Food Agric 96:2682-2691. doi:10.1002/jsfa.7386 10.1002/jsfa.738626303872
21
Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332-1334. doi:10.1139/b79-163 10.1139/b79-163
22
Hopkins WG, Hüner NPA (2008) Introduction to plant physiology. (4nd ed.). New York, NY, USA: John Wiley & Sons, Ltd; pp 190-192
23
Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: synthesis report. contribution of working group Ⅰ, Ⅱ and Ⅲ to the fifth assessment report of the intergovernmental panel on climate change. IPCC. Geneva, Switzerland. pp 1-151
24
Jiang HX, Chen LS, Zheng JG, Han S, Tang N, Smith BR (2008) Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol 28:1863-1871. doi:10.1093/treephys/28.12.1863 10.1093/treephys/28.12.186319193569
25
Jiang W, Li N, Zhang D, Meinhardt L, Cao B, Li Y, Song L (2020) Elevated temperature and drought stress significantly affect fruit quality and activity of anthocyanin-related enzymes in jujube (Ziziphus jujuba Mill. cv.'Lingwuchangzao'). PLoS One 15:e0241491. doi:10.1371/journal.pone.0241491 10.1371/journal.pone.024149133152049PMC7646374
26
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, et al. (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:1-11. doi:10.1007/s11738-016-2113-y 10.1007/s11738-016-2113-y
27
Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Advan Agron 77:293-368. doi:10.1016/S0065-2113(02)77017-X 10.1016/S0065-2113(02)77017-X
28
Kitao M, Yazaki K, Kitaoka S, Fukatsu E, Tobita H, Komatsu M, Maruyama Y, Koike T (2015) Mesophyll conductance in leaves of Japanese white birch (Betula platyphylla var. japonica) seedlings grown under elevated CO2 concentration and low N availability. Physiol Plant 155:435-445. doi:10.1111/ppl.12335 10.1111/ppl.1233525690946
29
Kodama N, Cousins A, Tu KP, Barbour MM (2011) Spatial variation in photosynthetic CO2 carbon and oxygen isotope discrimination along leaves of the monocot triticale (Triticum × Secale) relates to mesophyll conductance and the Péclet effect. Plant Cell Environ 34:1548-1562. doi:10.1111/j.1365-3040.2011.02352.x 10.1111/j.1365-3040.2011.02352.x21707646
30
Korea Meteorological Administration (2018) Analysis of climate change forecasts on the Korean Peninsula, Seoul, Korea, p 16
31
Lee HS, Lee S, Lee JC, Kim KW, Kim PG (2013) Effects of Elevated CO2 Concentration and Temperature on Physiological Characters of Liriodendron tulipifera. Korean J Agric For Meteorol 15:145-152. doi:10.5532/KJAFM.2013.15.3.145 10.5532/KJAFM.2013.15.3.145
32
Lee KC, An J, Hwang JE, Kim PB, Park HB (2021a) Effects of Light Condition on Growth and Physiological Characteristics of the Endangered Species Sedirea japonica under RCP 6.0 Climate Change Scenarios. Plants 10:1891. doi:10.3390/plants10091891 10.3390/plants1009189134579424PMC8471670
33
Lee KC, Kweon H, Sung JW, Kim YS, Song YG, Cha S, Koo N (2022) Physiological response analysis for the diagnosis of drought and waterlogging damage in Prunus yedoensis. Forest Sci Technol 14-25. doi:10.1080/21580103.2022.2035829 10.1080/21580103.2022.2035829
34
Lee S, Han SH, Oh CY, Bae EK, Lee JC, Kim PG (2005) Effects of Elevated CO2 Concentration and Air Temperature on the Water Physiological Characters of Populus alba × P. glandulosa cutting. J Agric Life Sci 49:101-110. doi:10.14397/jals.2015.49.6.101 10.14397/jals.2015.49.6.101
35
Lee SJ, Oh CY, Han SH, Kim KW, Kim PG (2014) Photosynthetic responses of Populus alba × glandulosa to elevated CO2 concentration and air temperature. Korean J Agric For Meteorol 16:22-28. doi:10.5532/KJAFM.2014.16.1.22 10.5532/KJAFM.2014.16.1.22
36
Lee SK, Cho JG, Jeong JH, Ryu S, Han JH (2021b) Effect of the Elevated Carbon Dioxide on the Growth and Physiological Responses of Peach 'Mihong'. J Bio-Env Con 30:312-319. doi:10.12791/KSBEC.2021.30.4.312 10.12791/KSBEC.2021.30.4.312
37
Leymarie J, Lasceve G, Vavasseur A (1999) Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana. Plant Cell Environ 22:301-308. doi:10.1046/j.1365-3040.1999.00403.x 10.1046/j.1365-3040.1999.00403.x
38
Lichtenthaler HK (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth Enzymol 148:350-382. doi:10.1016/0076-6879(87)48036-1 10.1016/0076-6879(87)48036-1
39
Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591-628. doi:10.1146/annurev.arplant.55.031903.141610 10.1146/annurev.arplant.55.031903.14161015377233
40
Lotfi R, Kalaji HM, Valizadeh GR, Khalilvand Behrozyar E, Hemati A, Gharavi-Kochebagh P, Ghassemi A (2018) Effects of humic acid on photosynthetic efficiency of rapeseed plants growing under different watering conditions. Photosynthetica 56:962-970. doi:10.1007/s11099-017-0745-9 10.1007/s11099-017-0745-9
41
Malhi GS, Kaur M, Kaushik P (2021) Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 13:1318. doi:10.3390/su13031318 10.3390/su13031318
42
Newth D, Gunasekera D (2018) Projected changes in wet-bulb globe temperature under alternative climate scenarios. Atmosphere 9:187. doi:10.3390/atmos9050187 10.3390/atmos9050187
43
Ro HM, Kim PG, Lee IB, Yiem MS, Woo SY (2001) Photosynthetic characteristics and growth responses of dwarf apple (Malus domestica Borkh. cv. Fuji) saplings after 3 years of exposure to elevated atmospheric carbon dioxide concentration and temperature. Trees 15:195-203. doi:10.1007/s004680100099 10.1007/s004680100099
44
Saraswathi SG, Paliwal K (2011) Drought induced changes in growth, leaf gas exchange and biomass production in Albizia lebbeck and Cassia siamea seedlings. J Environ Biol 32:173-178
45
Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035-1040. doi:10.1111/j.1365-3040.2007.01710.x 10.1111/j.1365-3040.2007.01710.x17661745
46
Shin YK, Bhandari SR, Cho MC, Lee JG (2020) Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Hortic Environ Biotechnol 61:433-443. doi:10.1007/s13580-020-00231-z 10.1007/s13580-020-00231-z
47
Son IC, Han JH, Cho JG, Kim SH, Chang EH, Oh SI, Moon KH, Choi IM (2014) Effects of the elevated temperature and carbon dioxide on vine growth and fruit quality of' Campbell Early 'grapevines (Vitis labruscana). Hortic Sci Technol 32:781-787. doi:10.7235/hort.2014.13059 10.7235/hort.2014.13059
48
Song W, Park GE, Je SM, Kim SH, Lim JH (2020) Growth and Physiological characteristics of Abies koreana, Pinus densiflora, Quercus serrata seedlings under the elevated temperature and CO2 concentration. J Climate Change Res 11:1-9. doi:10.15531/KSCCR.2020.11.1.1 10.15531/KSCCR.2020.11.1.1
49
Sousaraei N, Mashayekhi K, Mousavizadeh SJ, Akbarpour V, Medina J, Aliniaeifard S (2021) Screening of tomato landraces for drought tolerance based on growth and chlorophyll fluorescence analyses. Hortic Environ Biotechnol 62:521-535. doi:10.1007/s13580-020-00328-5 10.1007/s13580-020-00328-5
50
Stern N (2006) The Stern Review: The Economics of Climate Change. Cambridge University Press, p 575. doi:10.1017/CBO9780511817434 10.1017/CBO9780511817434
51
Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. Yunus M, Pathre U and Mohanty P (eds) Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor & Francis, London, UK. 2000;443-480
52
Wang D, Heckathorn SA, Wang X, Philpott SM (2012) A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 169:1-13. doi:10.1007/s00442-011-2172-0 10.1007/s00442-011-2172-022037993
53
Wang Y, Song G, Liang D, Xia H, Zhang H, Luo X, Deng Q (2022) Comparison of ascorbate metabolism in fruits of two jujube species with differences in ascorbic acid content. Hortic Environ Biotechnol 63:759-767. doi:10.1007/s13580-022-00431-9 10.1007/s13580-022-00431-9
54
Xia JB, Zhang GC, Wang RR, Zhang SY (2014) Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: Comparison of four models. Photosynthetica 52:253-261. doi:10.1007/s11099-014-0030-0 10.1007/s11099-014-0030-0
55
Yu SB, Kim BD, Shin HT, Kim SJ (2020) Habitat climate characteristics of Lauraceae evergreen broad-leaved trees and distribution change according to climate change. Korean J Environ Ecol 34:503-514. doi:10.13047/KJEE.2020.34.6.503 10.13047/KJEE.2020.34.6.503
56
Zheng WP, Wang P, Zhang HX, Zhou D (2011) Photosynthetic characteristics of the cotyledon and first true leaf of castor (Ricinus communis L.). Aust J Crop Sci 5:702-708
57
Zhou R, Quebedeaux B (2003) Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source-sink manipulation. J Am Soc Hortic Sci 128:113-119. doi:10.21273/JASHS.128.1.0113 10.21273/JASHS.128.1.0113
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 41
  • No :1
  • Pages :11-26
  • Received Date : 2022-09-30
  • Revised Date : 2022-11-17
  • Accepted Date : 2022-12-19