Research Article
Ahn B, Yang CB (1991) Chemical composition of Bangah (Agastache rugosa O. Kuntze) herb. Kor J Food Sci Technol 23:375-382
Bily AC, Burt AJ, Ramputh AL, Livesey J, Regnault-Roger C, Philogene BR, Arnason JT (2004) HPLC-PAD-APCI/MS assay of phenylpropanoids in cereals. Phytochem Anal 15:9-15. doi:10.1002/pca.735
10.1002/pca.73514979520Carmona-Castro G, Estrada-Soto S, Arellano-Garcia J, Arias-Duran L, Valencia-Diaz S, Perea-Arango I (2019) High accumulation of tilianin in in-vitro cultures of Agastache mexicana and its potential vasorelaxant action. Mol Biol Rep 46:1107-1115. doi:10.1007/s11033-018-4570-4
10.1007/s11033-018-4570-430554312Chen JH, Ho CT (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agr Food Chem 45:2374-2378. doi:10.1021/jf970055t
10.1021/jf970055tCuvelier ME, Richard H, Berset C (1996) Antioxidative activity and phenolic composition of pilot plant and commercial extracts of sage and rosemary. J Am Oil Chem Soc 73:645-652. doi:10.1007/BF02518121
10.1007/BF02518121Diaz AM, Abad MJ, Fernandez L, Silvan AM, De Santos J, Bermejo P (2004) Phenylpropanoid glycosides from Scrophularia scorodonia: In vitro anti-inflammatory activity. Life Sci 74:2515-2526. doi:10.1016/j.lfs.2003.10.008
10.1016/j.lfs.2003.10.00815010262Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171-178. doi:10.1016/1360-1385(96)10019-4
10.1016/1360-1385(96)10019-4Ellis BE, Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem J 118:291-297. doi:10.1042/bj1180291
10.1042/bj11802915484678PMC1179116Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA (2016) Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi J Biol Sci 23:524-530. doi:10.1016/j.sjbs.2016.02.020
10.1016/j.sjbs.2016.02.02027298587PMC4890188Hakkim FL, Shankar CG, Girija S (2007) Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. J Agr Food Chem 55:9109-9117. doi:10.1021/jf071509h
10.1021/jf071509h17924700Higdon JV, Delage B, Williams DE, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55:224-236. doi:10.1016/j.phrs.2007.01.009
10.1016/j.phrs.2007.01.00917317210PMC2737735Hong JJ, Choi JH, Oh SR, Lee HK, Park JH, Lee KY, Kim JJ, Jeong T, Oh GT (2001) Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett 495:142-147. doi:10.1016/S0014-5793(01)02379-1
10.1016/S0014-5793(01)02379-111334881Hong M, Jang H, Bo S, Kim M, Deepa P, Park J, Sowndhararajan K, Kim S (2022) Changes in human electroencephalographic activity in response to Agastache rugosa essential oil exposure. Behav Sci 12:238. doi:10.3390/bs12070238
10.3390/bs1207023835877308PMC9311756Hu YS, Zhang L, Di P, Chen WS (2009) Cloning and induction of phenylalanine ammonia-lyase gene from Salvia miltiorrhiza and its effect on hydrophilic phenolic acids levels. Chin J Nat Med 7:0449-0457. doi:10.1016/S1875-5364(09)60069-8
10.1016/S1875-5364(09)60069-8Kim YM, Kim MH, Yang OM (2015) Effects of Agastache rugosa on obesity via inhibition of peroxisome proliferator-activated receptor-gamma reduction of food intake. J Kor Med Obesity Res 15:104-110. doi:10.15429/jkomor.2015.15.2.104
10.15429/jkomor.2015.15.2.104Knogge W, Schmelzer E, Weissenböck G (1986) The role of chalcone synthase in the regulation of flavonoid biosynthesis in developing oat primary leaves. Arch Biochem Biophys 250:364-372. doi:10.1016/0003-9861(86)90738-1
10.1016/0003-9861(86)90738-13777940Kuroki G, Poulton JE (1981) The para-O-methylation of apigenin to acacetin by cell-free extracts of Robinia pseudoacacia L. Zeitschrift für Naturforschung C 36:916-920. doi:10.1515/znc-1981-11-1202
10.1515/znc-1981-11-1202Lam VP, Kim SJ, Park JS (2020) Optimizing the electrical conductivity of a nutrient solution for plant growth and bioactive compounds of agastache rugosa in a plant factory. Agronomy 10:76. doi:10.3390/agronomy10010076
10.3390/agronomy10010076Lee HW, Ryu HW, Baek SC, Kang MG, Park D, Han HY, An JH, Oh SR, Kim H (2017) Potent inhibitions of monoamine oxidase A and B by acacetin and its 7-O-(6-O-malonylglucoside) derivative from Agastache rugosa. Int J Biol Macromol 104:547-553. doi:10.1016/j.ijbiomac.2017.06.076
10.1016/j.ijbiomac.2017.06.07628634060Lee SY, Xu H, Kim YK, Park SU (2008) Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J Microbiol Biotechnol 24:969-972. doi:10.1007/s11274-007-9560-y
10.1007/s11274-007-9560-yLi FX, Jin ZP, Zhao DX, Cheng LQ, Fu CX, Ma F (2006). Overexpression of the Saussurea medusa chalcone isomerase gene in S. involucrata hairy root cultures enhances their biosynthesis of apigenin. Phytochemistry 67:553-560. doi:10.1016/j.phytochem.2005.12.004
10.1016/j.phytochem.2005.12.00416427667Nam KH, Choi JH, Seo YJ, Lee YM, Won YS, Lee MR, Lee MN, Park JG, Kim YM, et al. (2006) Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice. Exp Mol Med 38:445-452. doi:10.1038/emm.2006.52
10.1038/emm.2006.5216953124Martens S, Mithöfer A (2005) Flavones and flavone synthases. Phytochemistry 66:2399-2407. doi:10.1016/j.phytochem.2005.07.013
10.1016/j.phytochem.2005.07.01316137727Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, Ric De Vos CH, Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470-474. doi:10.1038/88150
10.1038/8815011329019Ogata J, Itoh Y, Ishida M, Yoshida H, Ozeki Y (2004) Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnology 21:367-375. doi:10.5511/plantbiotechnology.21.367
10.5511/plantbiotechnology.21.367Oh SR, Jung KY, Kim JH, Lee HK (1996) In vitro anticomple-mentary activity of phenylpropanoids from Agastache rugosa. Korean J Pharmacognosy 27:20-25
Park CH, Park SY, Park YJ, Kim JK, Park SU (2020a) Metabolite profiling and comparative analysis of secondary metabolites in Chinese Cabbage, radish, and hybrid xBrassicoraphanus. J Agric Food Chem 68:13711-13719. doi:10.1021/acs.jafc.0c04897
10.1021/acs.jafc.0c0489733190495Park CH, Yeo HJ, Kim NS, Eun PY, Kim SJ, Arasu MV, Al-Dhabi NA, Park SY, Kim JK, et al. (2017) Metabolic profiling of pale green and purple kohlrabi (Brassica oleracea var. gongylodes). Appl Biol Chem 60:249-257. doi:10.1007/s13765-017-0274-z
10.1007/s13765-017-0274-zPark WT, Yeo SK, Sathasivam R, Park JS, Kim JK, Park SU (2020b) Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugosa. Appl Biol Chem 63:1-9. doi:10.1186/s13765-020-00510-4
10.1186/s13765-020-00510-4Parnham MJ, Kesselring K (1985) Rosmarinic acid. Drugs Future 10:756-757. doi:10.1358/dof.1985.010.09.71743
10.1358/dof.1985.010.09.71743Petersen MS (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30:2877-2881. doi:10.1016/S0031-9422(00)98217-7
10.1016/S0031-9422(00)98217-7Petersen M (1997) Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45:1165-1172. doi:10.1016/S0031-9422(97)00135-0
10.1016/S0031-9422(97)00135-0Rani A, Singh K, Sood P, Kumar S, Ahuja PS (2009) p-Coumarate:CoA ligase as a key gene in the yield of catechins in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genomic 9:271-275. doi:10.1007/s10142-008-0098-3
10.1007/s10142-008-0098-318931865Singh K, Kumar S, Rani A, Gulati A, Ahuja P (2009) Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Funct Integr Genomic 9:125-134. doi:10.1007/s10142-008-0092-9
10.1007/s10142-008-0092-918679731Song J, Wang ZZ (2011) RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. J Plant Res 124:183-192. doi:10.1007/s10265-010-0350-5
10.1007/s10265-010-0350-520509039Takeda H, Tsuji M, Miyamoto J, Matsumiya T (2002) Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress. Psychopharmacology (Berl) 164:233-235. doi:10.1007/s00213-002-1253-5
10.1007/s00213-002-1253-512404088Tuan PA, Park WT, Xu H, Park NI, Park SU (2012) Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J Agric Food Chem 60:5945-5951. doi:10.1021/jf300833m
10.1021/jf300833m22630830Wei JF, Cao PR, Wang JM, Kang WY (2016) Analysis of tilianin and acacetin in Agastache rugosa by high-performance liquid chromatography with ionic liquids-ultrasound based extraction. Chem Cent J 10:1-9. doi:10.1186/s13065-016-0223-7
10.1186/s13065-016-0223-727994640PMC5127089Weitzel C, Petersen M (2010) Enzymes of phenylpropanoid metabolism in the important medicinal plant Melissa officinalis L. Planta 232:731-742. doi:10.1007/s00425-010-1206-x
10.1007/s00425-010-1206-x20563822Xu F, Cai R, Cheng SY, Du HW, Wang Y, Cheng SH (2008) Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 7:721-729
Yeo HJ, Park CH, Park YE, Hyeon H, Kim JK, Lee SY, Park SU (2021) Metabolic profiling and antioxidant activity during flower development in Agastache rugose. Physiol Mol Biol Pla 27:445-455. doi:10.1007/s12298-021-00945-z
10.1007/s12298-021-00945-z33854275PMC7981361- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 42
- No :4
- Pages :452-462
- Received Date : 2023-10-30
- Revised Date : 2024-01-30
- Accepted Date : 2024-03-05
- DOI :https://doi.org/10.7235/HORT.20240037