All Issue

2021 Vol.39, Issue 5 Preview Page

Research Article

October 2021. pp. 673-683
Abstract
References
1
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, et al. (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nature biotechnol 30:174. doi:10.1038/nbt.2095 10.1038/nbt.209522267009
2
Bang H, King SR, Liu W (2005) A new male sterile mutant identified in watermelon with multiple unique morphological features. REPORT-CUCURBIT GENETICS COOPERATIVE 28:47
3
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. doi:10.1093/bioinformatics/btu170 10.1093/bioinformatics/btu17024695404PMC4103590
4
Dyutin KE, Sokolov SD (1990) Spontaneous mutant of watermelon with male sterility. Tsitol Genet 24:56-57
5
Ferguson AC, Pearce S, Band LR, Yang C, Ferjentsikova I, King J, Yuan Z, Zhang D, Wilson ZA (2017) Biphasic regulation of the transcription factor ABORTED MICROSPORES (AMS) is essential for tapetum and pollen development in Arabidopsis. New Phytol 213:778-790. doi:10.1111/nph.14200 10.1111/nph.1420027787905PMC5215365
6
Fernandez-Calvo P, Chini A, Fernandez-Barbero G, Chico JM, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, et al. (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701-715. doi:10.1105/tpc.110.080788 10.1105/tpc.110.08078821335373PMC3077776
7
Guo S, Zhao S, Sun H, Wang X, Wu S, Lin T, Ren Y, Gao L, Deng Y, et al. (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51:1616-1623. doi:10.1038/s41588-019-0518-4 10.1038/s41588-019-0518-431676863
8
Hexun H, Xiaoqi Z, Zhencheng W, Qinghuai L, Xi L (1998) Inheritance of male-sterility and dwarfism in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai]. Scientia Hortic 74:175-181. doi:10.1016/S0304-4238(97)00102-7 10.1016/S0304-4238(97)00102-7
9
Horner HT, Palmer RG (1995) Mechanisms of genic male sterility. Crop Sci 35:1527-1535. doi:10.2135/cropsci1995.0011183X003500060002x 10.2135/cropsci1995.0011183X003500060002x
10
Hu J, Lan M, Xu X, Yang H, Zhang L, Lv F, Yang H, Yang D, Li C, et al. (2021) Transcriptome profiling reveals molecular changes during flower development between male sterile and fertile Chinese cabbage (Brassica rapa ssp. pekinensis) Lines. Life (Basel) 11. doi:10.3390/life11060525 10.3390/life1106052534199781PMC8227754
11
Itoh N, Segawa T, Tamiru M, Abe A, Sakamoto S, Uemura A, Oikawa K, Kutsuzawa H, Koga H, et al. (2019) Next-generation sequencing-based bulked segregant analysis for QTL mapping in the heterozygous species Brassica rapa. Theor Appl Genet 132:2913-2925. doi:10.1007/s00122-019-03396-z 10.1007/s00122-019-03396-z31317235
12
Jang YJ, Seo M, Hersh CP, Rhee S-J, Kim Y, Lee GP (2019) An evolutionarily conserved non-synonymous SNP in a leucine-rich repeat domain determines anthracnose resistance in watermelon. Theor Appl Genet 132:473-488. doi:10.1007/s00122-018-3235-y 10.1007/s00122-018-3235-y30446794
13
Jang YJ, Yun HS, Rhee S-J, Seo M, Kim Y, Lee GP (2020) Exploring molecular markers and candidate genes responsible for watermelon dwarfism. Hortic Environ Biotechnol 61:173-182. doi:10.1007/s13580-020-00229-7 10.1007/s13580-020-00229-7
14
Kim C, Lee C, Shin JS, Chung Y, Hyung N (1997) A simple and rapid method for isolation of high quality genomic DNA from fruit trees and conifers using PVP. Nucleic Acids Res 25:1085-1086. doi:10.1093/nar/25.5.1085 10.1093/nar/25.5.10859023124PMC146538
15
Kosambi DD (2016) The estimation of map distances from recombination values. In DD Kosambi. Springer, pp 125-130. doi:10.1007/978-81-322-3676-4_16 10.1007/978-81-322-3676-4_16
16
Kumar S, Banerjee M, Kalloo G (2000) Male sterility: mechanisms and current status on identification, characterization and utilization in vegetables. Veget Sci 27:1-24
17
Lee GP, Jang YJ, Sim TY, Rhee S (2020) Molecular marker to select male-sterile watermelon and use thereof. KR patent no. 10-2100366
18
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27:2987-2993. doi:10.1093/bioinformatics/btr509 10.1093/bioinformatics/btr50921903627PMC3198575
19
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. doi:10.1093/bioinformatics/btp324 10.1093/bioinformatics/btp32419451168PMC2705234
20
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079. doi:10.1093/bioinformatics/btp352 10.1093/bioinformatics/btp35219505943PMC2723002
21
Liu X, Yang M, Liu X, Wei K, Cao X, Wang X, Wang X, Guo Y, Du Y, et al. (2019) A putative bHLH transcription factor is a candidate gene for male sterile 32, a locus affecting pollen and tapetum development in tomato. Hortic Res 6:88. doi:10.1038/s41438-019-0170-2 10.1038/s41438-019-0170-231666957PMC6804878
22
Maoto MM, Beswa D, Jideani AI (2019) Watermelon as a potential fruit snack. Int J Food Prop 22:355-370. doi:10.1080/10942912.2019.1584212 10.1080/10942912.2019.1584212
23
Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, Shaw PD, Marshall D (2013) Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193-202. doi:10.1093/bib/bbs012 10.1093/bib/bbs01222445902
24
Mishra S, Kumari V (2018) A review on male sterility-concepts and utilization in vegetable crops. Int J Curr Microbiol App Sci 7:3016-3034. doi:10.20546/ijcmas.2018.702.367 10.20546/ijcmas.2018.702.367
25
Mohammad M, Ali A (2009) Role of genetically engineered system of male sterility in hybrid production of vegetables. J Phytol 1:448-460
26
Moon S, Hong WJ, Kim YJ, Chandran AKN, Gho YS, Yoo YH, Nguyen VNT, An G, Park SK, et al. (2020) Comparative transcriptome analysis reveals gene regulatory mechanism of UDT1 on anther development. J Plant Biol 63:289-296. doi:10.1007/s12374-020-09250-w 10.1007/s12374-020-09250-w
27
Park G, Kim JH, Jin B, Yang H, Park S, Kang S, Chung S, Park Y (2018) Genome-wide sequence variation in watermelon inbred lines and its implication for marker-assisted breeding. Kor J Hortic Sci Technol 36:280-291. doi:10.12972/kjhst.20180028 10.12972/kjhst.20180028
28
Ray D, Sherman J (1988) Desynaptic chromosome behavior of the gms mutant in watermelon. J Hered 79:397-399. doi:10.1093/oxfordjournals.jhered.a110537 10.1093/oxfordjournals.jhered.a110537
29
Rhee S-J, Kwon T, Seo M, Jang YJ, Sim TY, Cho S, Han S-W, Lee GP (2017) De novo-based transcriptome profiling of male-sterile and fertile watermelon lines. PLOS ONE 12:e0187147. doi:10.1371/journal.pone.0187147 10.1371/journal.pone.018714729095876PMC5667795
30
Rhee S-J, Seo M, Jang Y-J, Cho S, Lee GP (2015) Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC genomics 16. doi:10.1186/s12864-015-2186-9 10.1186/s12864-015-2186-926552448PMC4640349
31
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics methods and protocols. Springer, pp 365-386. doi:10.1385/1-59259-192-2:365 10.1385/1-59259-192-2:36510547847
32
Ruangrak E, Su X, Huang Z, Wang X, Guo Y, Du Y, Gao J (2018) Fine mapping of a major QTL controlling early flowering in tomato using QTL-seq. Can J Plant Sci 98:672-682. doi:10.1139/cjps-2016-0398 10.1139/cjps-2016-0398
33
Sugihara Y, Young L, Yaegashi H, Natsume S, Shea DJ, Takagi H, Booker H, Innan H, Terauchi R, et al. (2020) High-performance pipeline for MutMap and QTL-seq. In. Cold Spring Harbor Laboratory. doi:10.1101/2020.06.28.176586 10.1101/2020.06.28.176586
34
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, et al. (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174-183. doi:10.1111/tpj.12105 10.1111/tpj.1210523289725
35
Vogel G, LaPlant KE, Mazourek M, Gore MA, Smart CD (2021) A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theor Appl Genet 134:1015-1031. doi:10.1007/s00122-020-03747-1 10.1007/s00122-020-03747-133388885
36
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J (2019) Maize genic male-sterility genes and their applications in hybrid breeding: Progress and perspectives. Molecular Plant 12:321-342. doi:10.1016/j.molp.2019.01.014 10.1016/j.molp.2019.01.01430690174
37
Wang Y, Yang X, Yadav V, Mo Y, Yang Y, Zhang R, Wang Z, Chang J, Li H, et al. (2020) Analysis of differentially expressed genes and pathways associated with male sterility lines in watermelon via bulked segregant RNA-seq. 3 Biotech 10. doi:10.1007/s13205-020-02208-2 10.1007/s13205-020-02208-232368431PMC7190782
38
Wang Z, Yu A, Li F, Xu W, Han B, Cheng X, Liu A (2021) Bulked segregant analysis reveals candidate genes responsible for dwarf formation in woody oilseed crop castor bean. Scientific Reports 11:1-15. doi:10.1038/s41598-021-85644-1 10.1038/s41598-021-85644-133737619PMC7973431
39
Watts V (1962) A marked male-sterile mutant in watermelon. In Proc. Amer. Soc. Hort. Sci, Vol 81, pp 498-505
40
Watts V (1967) Development of disease resistance and seed production in watermelon stocks carrying msg gene. In Proc. Amer. Soc. Hort. Sci, Vol 91, p 579
41
Wei C, Zhang R, Yue Z, Yan X, Cheng D, Li J, Li H, Zhang Y, Ma J, et al. (2021) The impaired biosynthetic networks in defective tapetum lead to male sterility in watermelon. J Proteomics 243:104241. doi:10.1016/j.jprot.2021.104241 10.1016/j.jprot.2021.10424133905954
42
Wen J, Jiang F, Weng Y, Sun M, Shi X, Zhou Y, Yu L, Wu Z (2019) Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC plant biology 19:1-17. doi:10.1186/s12870-019-2008-3 10.1186/s12870-019-2008-331510927PMC6739936
43
Wingett SW, Andrews S (2018) FastQ Screen: A tool for multi-genome mapping and quality control. F1000Research 7:1338. doi:10.12688/f1000research.15931.2 10.12688/f1000research.15931.230254741PMC6124377
44
Zhang X, Rhodes B, Baird W, Skorupska H, Bridges W (1996) Development of genic male-sterile watermelon lines with delayed-green seedling marker. Hortsci 31:123-126. doi:10.21273/HORTSCI.31.1.123 10.21273/HORTSCI.31.1.123
45
Zhang X, Wang M (1990) A genetic male-sterile (ms) watermelon from China. Cucurbit Genetics Coop Rpt 13:45
46
Zhang Y, Cheng Z, Ma J, Xian F, Zhang X (2012) Characteristics of a novel male-female sterile watermelon (Citrullus lanatus) mutant. Scientia Hortic 140:107-114. doi:10.1016/j.scienta.2012.03.020 10.1016/j.scienta.2012.03.020
47
Zhu E, You C, Wang S, Cui J, Niu B, Wang Y, Qi J, Ma H, Chang F (2015) The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. Plant J 83:976-990. doi:10.1111/tpj.12942s 10.1111/tpj.1294226216374
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :5
  • Pages :673-683
  • Received Date :2021. 07. 14
  • Revised Date :2021. 08. 29
  • Accepted Date : 2021. 08. 30