All Issue

2024 Vol.42, Issue 6 Preview Page

Research Article

31 December 2024. pp. 711-724
Abstract
References
1

Asriny DM, Rani S, Hidayatullah AF (2020) Orange fruit images classification using convolutional neural networks. In IOP Conference series: materials science and engineering 803:012020. doi:10.1088/1757-899X/803/1/012020

10.1088/1757-899X/803/1/012020
2

Bhatti MA, Riaz R, Rizvi SS, Shokat S, Riaz F, Kwon SJ (2020) Outlier detection in indoor localization and Internet of Things (IoT) using machine learning. J Commun Netw 22:236-243. doi:10.1109/JCN.2020.000018

10.1109/JCN.2020.000018
3

Candemir S, Nguyen XV, Folio L R, Prevedello LM (2021) Training strategies for radiology deep learning models in data-limited scenarios. Radiol Artif Intell 3:e210014. doi:10.1148/ryai.2021210014

10.1148/ryai.202121001434870217PMC8637222
4

Chen J, Kao SH, He H, Zhuo W, Wen S, Lee CH, Chan SHG (2023) Run, don't walk: chasing higher FLOPS for faster neural networks. In proceedings of the IEEE/CVF conference on computer vision and pattern recognition 12021-12031. doi:10.1109/CVPR52729.2023.01157

10.1109/CVPR52729.2023.01157
5

Dasgupta I, Guo D, Gershman SJ, Goodman ND (2020) Analyzing machine‐learned representations: A natural language case study. Cogn Sci 44:e12925. doi:10.1111/cogs.12925

10.1111/cogs.1292533340161
6

Demšar J, Zupan B (2012) Orange: Data mining fruitful and fun. Inf Družba IS 6:1-486

7

Demšar J, Zupan B (2013) Orange: Data mining fruitful and fun-a historical perspective. Informatica 37:55-60

8

Dong K, Zhou C, Ruan Y, Li Y (2020) MobileNetV2 model for image classification. In 2020 2nd International conference: information technology and computer application (ITCA) pp 476-480. doi:10.1109/ITCA52113.2020.00106

10.1109/ITCA52113.2020.00106
9

Godec P, Pančur M, Ilenič N, Čopar A, Stražar M, Erjavec A, Pretnar A, Demsar J, Starič A, et al. (2019) Democratized image analytics by visual programming through integration of deep models and small-scale machine learning. Nat Commun 10:4551. doi:10.1038/s41467-019-12397-x

10.1038/s41467-019-12397-x31591416PMC6779910
10

Gozzovelli R, Franchetti B, Bekmurat M, Pirri F (2021) Tip-burn stress detection of lettuce canopy grown in Plant Factories. In proceedings of the IEEE/CVF international conference on computer vision 1259-1268. doi:10.1109/ICCVW54120.2021.00146

10.1109/ICCVW54120.2021.00146
11

Hamidon MH, Ahamed T (2022) Detection of tip-burn stress on lettuce grown in an indoor environment using deep learning algorithms. Sensors 22:7251. doi:10.3390/s22197251

10.3390/s2219725136236351PMC9571858
12

Hridoy RH, Tuli MRA (2021) A deep ensemble approach for recognition of papaya diseases using EfficientNet models. In 2021 5th international conference: electrical engineering and information communication technology (ICEEICT) pp 1-6. doi:10.1109/ICEEICT53905.2021.9667825

10.1109/ICEEICT53905.2021.9667825
13

Ishak A, Siregar K, Ginting R, Afif M (2020) Orange software usage in data mining classification method on the dataset lenses. In IOP Conference series: materials science and engineering 1003:012113. doi:10.1088/1757-899X/1003/1/012113

10.1088/1757-899X/1003/1/012113
14

Kang TH, Kim HJ, Noh HK (2020) Convolution neural network of deep learning for detection of fire blight on pear tree. Hortic Sci Technol 38:763-775. doi:10.7235/HORT.20200069

10.7235/HORT.20200069
15

Kaufmann C (2023) Reducing tip burn in lettuce grown in an indoor vertical farm: comparing the impact of vertically distributed airflow vs. horizontally distributed airflow in the growth of Lactuca sativa (Order No. 30491903). IOP publishing proQuest dissertations and theses global. https://www.proquest.com/dissertations-theses/reducing-tipburn-lettuce-grown-indoor-vertical/docview/2825771585/se-2. Accessed 15 July 2023

16

Kirwan RF, Abbas F, Atmosukarto I, Loo AWY, Lim JH, Yeo S (2023) Scalable agritech growbox architecture. Front Internet Things 2:1256163. doi:10.3389/friot.2023.1256163

10.3389/friot.2023.1256163
17

Koakutsu SSKUS (2019) Automatic identification of plant physiological disorders in plant factory using convolutional neural networks. In the 5th international conference: electronics and software science (ICESS2019) pp 7-11

18

Kozai T (2018) Smart plant factory: The next generation indoor vertical farms. Springer, Singapore, pp 238. doi:10.1007/978-981-13-1065-2

10.1007/978-981-13-1065-2
19

Kozai T, Niu G, Takagaki M (2019) Plant factory: an indoor vertical farming system for efficient quality food production. Springer, Singapore, pp 3-13. doi:10.1007/978-981-13-1065-2_1

10.1007/978-981-13-1065-2_1
20

Kubota C, Papio G, Ertle J (2022) Technological overview of tipburn management for lettuce (Lactuca sativa) in vertical farming conditions. In XXXI international horticultural congress (IHC2022): international symposium on advances in vertical farming 1369:65-74. doi:10.17660/ActaHortic.2023.1369.8

10.17660/ActaHortic.2023.1369.8
21

Lee JG, Choi CS, Jang YA, Jang SW, Lee SG, Um YC (2013) Effects of air temperature and air flow rate control on the tipburn occurrence of leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol 54:303-310. doi:10.1007/s13580-013-0031-0

10.1007/s13580-013-0031-0
22

Maruo T, Johkan M (2020) Tipburn. In Plant factory, Ed 2, Academic Press, pp 231-234. doi:10.1016/B978-0-12-816691-8.00015-7

10.1016/B978-0-12-816691-8.00015-7
23

Mehrer J, Spoerer CJ, Kriegeskorte N, Kietzmann TC (2020) Individual differences among deep neural network models. Nat Commun 11:5725. doi:10.1038/s41467-020-19632-w

10.1038/s41467-020-19632-w33184286PMC7665054
24

Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning in image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW) pp 117-122. doi:10.1109/IIPHDW.2018.8388338

10.1109/IIPHDW.2018.8388338
25

Mohapatra S, Swarnkar T (2021) Comparative study of different orange data mining tool-based AI techniques in image classification. In Advances in intelligent computing and communication: proceedings of ICAC 2020. Springer, Singapore, pp 611-620. doi:10.1007/978-981-16-0695-3_57

10.1007/978-981-16-0695-3_57
26

Patro VM, Patra MR (2014) Augmenting weighted average with confusion matrix to enhance classification accuracy. Trans mach learn artif intell 2:77-91. doi:10.14738/tmlai.24.328

10.14738/tmlai.24.328
27

Qian Y, Li G, Lin X, Zhang J, Yan J, Xie B, Qin J (2019) Fresh tea leaves classification using inception-V3. In 2019 IEEE 2nd international conference on information communication and signal processing (ICICSP) pp 415-419. doi:10.1109/ICICSP48821.2019.8958529

10.1109/ICICSP48821.2019.8958529PMC6816625
28

Ramachandran P, Zoph B, Le QV (2017) Searching for activation functions. arXiv preprint arXiv:1710.05941. doi:10.48550/arXiv.1710.05941

10.48550/arXiv.1710.05941
29

Rao E G, Anitha G, Kumar GK (2021) Plant disease detection using convolutional neural networks. In 2021 5th international conference on trends in electronics and informatics (ICOEI), Tirunelveli, India, pp 1473-1476. doi:10.1109/ICOEI51242.2021.9453045

10.1109/ICOEI51242.2021.9453045
30

Ratra R, Gulia P (2020) Experimental evaluation of open-source data mining tools (WEKA and Orange). Int J Eng Trends Technol 68:30-35. doi:10.14445/22315381/IJETT-V68I8P206S

10.14445/22315381/IJETT-V68I8P206S
31

Raut VR, Nage MA (2019) Detection and identification of plant leaf diseases based on python. Int J Eng Res Technol (IJERT) 8:296-300

32

Rizkiana A, Nugroho AP, Salma NM, Afif S, Masithoh RE, Sutiarso L, Okayasu T (2021) Plant growth prediction model for lettuce (Lactuca sativa) in plant factories using artificial neural network. In IOP conference series: earth and environmental science 733:012027. doi:10.1088/1755-1315/733/1/012027

10.1088/1755-1315/733/1/012027
33

Saabith AS, Vinothraj T, Fareez M (2020) Popular python libraries and their application domains. Int J Adv Eng Res Dev, 7.

34

Shi Y, ValizadehAslani T, Wang J, Ren P, Zhang Y, Hu M, Liang H (2022) Improving imbalanced learning by pre-finetuning with data augmentation. In fourth international workshop on learning with imbalanced domains: Theory and Applications pp 68-82

35

Shoaib M, Shah B, Ei-Sappagh S, Ali A, Ullah A, Alenezi F, Gechev T, Hussain T, Ali F (2023) An advanced deep learning models-based plant disease detection: A review of recent research. Front Plant Sci 14:1158933. doi:10.3389/fpls.2023.1158933

10.3389/fpls.2023.115893337025141
36

Shrimali S (2021) Plantifyai: a novel convolutional neural network based mobile application for efficient crop disease detection and treatment. Procedia Comput Sci 191:469-474. doi:10.1016/j.procs.2021.07.059

10.1016/j.procs.2021.07.059
37

Singh KK (2018) An artificial intelligence and cloud based collaborative platform for plant disease identification, tracking and forecasting for farmers. In 2018 IEEE international conference: cloud computing in emerging markets (CCEM) 49-56. doi:10.1109/CCEM.2018.00016

10.1109/CCEM.2018.00016
38

Singh V, Sharma N, Singh S (2020) A review of imaging techniques for plant disease detection. Artif Intell 4:229-242. doi:10.1016/j.aiia.2020.10.002

10.1016/j.aiia.2020.10.002
39

Story D, Kacira M, Kubota C, Akoglu A, An L (2010) Lettuce calcium deficiency detection with machine vision computed plant features in controlled environments. Comput Electron Agric 74:238-243. doi:10.1016/j.compag.2010.08.010

10.1016/j.compag.2010.08.010
40

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818-2826. doi:10.1109/CVPR.2016.308

10.1109/CVPR.2016.308
41

Tatbul N, Lee TJ, Zdonik S, Alam M, Gottschlich J (2018) Precision and recall for time series. Adv Neural Inf Process Syst 31

42

Thakur PS, Khanna P, Sheorey T, Ojha A (2022) Trends in vision-based machine learning techniques for plant disease identification: A systematic review. Expert Syst Appl 118117. doi:10.1016/j.eswa.2022.118117

10.1016/j.eswa.2022.118117
43

Tripathi M (2021) Analysis of convolutional neural network-based image classification techniques. J Innov Image Proc (JIIP) 3:100-117. doi:10.36548/jiip.2021.2.003

10.36548/jiip.2021.2.003
44

Vaishnav D, Rao BR (2018) Comparison of machine learning algorithms and fruit classification using orange data mining tool. In 2018 3rd international conference on inventive computation technologies (ICICT) pp 603-607. doi:10.1109/ICICT43934.2018.9034442

10.1109/ICICT43934.2018.9034442
45

Xenakis A, Papastergiou G, Gerogiannis VC, Stamoulis G (2020) Applying a convolutional neural network in an IoT robotic system for plant disease diagnosis. In 2020 11th international conference on information, intelligence, systems and applications (IISA) pp 1-8. doi:10.1109/IISA50023.2020.9284356

10.1109/IISA50023.2020.9284356
46

Zhu Y, Newsam S (2017) Densenet for dense flow. In 2017 IEEE international conference: image processing (ICIP) pp 790-794. doi:10.1109/ICIP.2017.8296389

10.1109/ICIP.2017.8296389
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 42
  • No :6
  • Pages :711-724
  • Received Date : 2024-01-30
  • Revised Date : 2024-05-01
  • Accepted Date : 2024-06-11