Research Article
Cheng Z, Liu Z, Xu Y, Ma L, Chen J, Gou J, Su L, Wu W, Chen Y, et al. (2021) Fine mapping and identification of the candidate gene BFS for fruit shape in wax gourd (Benincasa hispida). Theor Appl Genet 134:3983-3995. https://doi.org/10.1007/s00122-021-03942-8
10.1007/s00122-021-03942-834480584Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169-196. https://doi.org/10.1007/s10681-005-1681-5
10.1007/s10681-005-1681-5Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800-804. https://doi.org/10.1038/ng.144
10.1038/ng.14418469814Cui J, Cheng J, Nong D, Peng J, Hu Y, He W, Zhou Q, Dhillon NPS, Hu K (2017) Genome-wide analysis of simple sequence repeats in bitter gourd (Momordica charantia). Front Plant Sci 8:1103. https://doi.org/10.3389/fpls.2017.01103
10.3389/fpls.2017.0110328690629PMC5479929Cui J, Yang Y, Luo S, Wang L, Huang R, Wen Q, Han X, Miao N, Cheng J, et al. (2020) Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd (Momordica spp.). Hortic Res 7:85. https://doi.org/10.1038/s41438-020-0305-5
10.1038/s41438-020-0305-532528697PMC7261802Cui J, Zhou Y, Zhong J, Feng C, Hong Y, Hu K, Cao Y (2022) Genetic diversity among a collection of bitter gourd (Momordica charantia L.) cultivars. Genet Resour Crop Evol 69:729-735. https://doi.org/10.1007/s10722-021-01258-6
10.1007/s10722-021-01258-6Cui Z, Xia A, Zhang A, Luo J, Yang X, Zhang L, Ruan Y, He Y (2018) Linkage mapping combined with association analysis reveals QTL and candidate genes for three husk traits in maize. Theor Appl Genet 131:2131-2144. https://doi.org/10.1007/s00122-018-3142-2
10.1007/s00122-018-3142-230043259Duan Y, Gao M, Guo Y, Liang X, Liu X, Xu H, Liu J, Gao Y, Luan F (2022) Map-based cloning and molecular marker development of watermelon fruit shape gene. Sci Agr Sinica 55:2812-2824. https://doi.org/10.3864/j.issn.0578-1752.2022.14.011 (Abstract in English)
10.3864/j.issn.0578-1752.2022.14.011Hackett CA (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48:585-599. https://doi.org/10.1023/a:1014896712447
10.1023/A:101489671244711999836Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, et al. (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068-1076. https://doi.org/10.1101/gr.089516.108
10.1101/gr.089516.10819420380PMC2694477Jia S, Shen M, Zhang F, Xie J (2017) Recent advances in Momordica charantia: functional components and biological activities.Int J Mol Sci 18:2555. https://doi.org/10.3390/ijms18122555
10.3390/ijms1812255529182587PMC5751158Kaur G, Pathak M, Singla D, Chhabra G, Chhuneja P, Kaur Sarao N (2022) Quantitative trait loci mapping for earliness, fruit, and seed related traits using high density genotyping-by-sequencing-based genetic map in bitter gourd (Momordica charantia L.). Front Plant Sci 12:799932. https://doi.org/10.3389/fpls.2021.799932
10.3389/fpls.2021.79993235211132PMC8863046Kole C, Olukolu BA, Kole P, Rao VK, Bajpai A, Backiyarani S, Singh J, Elanchezhian R, Abbott AG (2012) The first genetic map and positions of major fruit trait loci of bitter melon (Momordica charantia). J Plant Sci Mol Breed 1:1-6. https://doi.org/10.7243/2050-2389-1-1
10.7243/2050-2389-1-1Lee HY, Ro NY, Patil A, Lee JH, Kwon JK, Kang BC (2020) Uncovering candidate genes controlling major fruit-related traits in pepper via genotype-by-sequencing based QTL mapping and genome-wide association study. Front Plant Sci 11:1100. https://doi.org/10.3389/fpls.2020.01100
10.3389/fpls.2020.0110032793261PMC7390901Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760. https://doi.org/10.1093/bioinformatics/btp324
10.1093/bioinformatics/btp32419451168PMC2705234Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
10.1093/bioinformatics/btp35219505943PMC2723002Li N, Shang J, Li N, Zhou D, Kong S, Wang J, Ma S (2021) Accurate molecular identification for fruit shape in watermelon (Citrullus lanatus). Acta Horti Sinica 48:1386-1396. https://doi.org/10.16420/j.issn.0513-353x.2021-0152 (Abstract in English)
10.16420/j.issn.0513-353x.2021-0152Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99:13302-13306. https://doi.org/10.1073/pnas.162485999
10.1073/pnas.16248599912242331PMC130628Ma J, Li C, Zong M, Qiu Y, Liu Y, Huang Y, Xie Y, Zhang H, Wang J (2022) CmFSI8/CmOFP13 encoding an OVATE family protein controls fruit shape in melon. J Exp Bot 73:1370-1384. https://doi.org/10.1093/jxb/erab510
10.1093/jxb/erab51034849737Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10-12. https://doi.org/10.14806/ej.17.1.200
10.14806/ej.17.1.200Martínez-Martínez C, Gonzalo MJ, Sipowicz P, Campos M, Martínez-Fernández I, Leida C, Zouine M, Alexiou KG, Garcia-Mas J, et al. (2022) A cryptic variation in a member of the Ovate Family Proteins is underlying the melon fruit shape QTL fsqs8.1. Theor Appl Genet 135:785-801. https://doi.org/10.1007/s00122-021-03998-6
10.1007/s00122-021-03998-634821982PMC8942903McCreight JD, Staub JE, Wehner TC, Dhillon NP (2013) Gone global: familiar and exotic cucurbits have Asian origins. HortSci 48:1078-1089. https://doi.org/10.21273/HORTSCI.48.9.1078
10.21273/HORTSCI.48.9.1078McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297-1303. https://doi.org/10.1101/gr.107524.110
10.1101/gr.107524.11020644199PMC2928508Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier MC, Delalande C, et al. (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244-2254. https://doi.org/10.1104/pp.111.173997
10.1104/pp.111.17399721673133PMC3149950Ooijen V (2009) MapQTL 6, Software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen, Netherlands.
Pan Y, Liang X, Gao M, Liu H, Meng H, Weng Y, Cheng Z (2017) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130:573-586. https://doi.org/10.1007/s00122-016-2836-6
10.1007/s00122-016-2836-627915454Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1-21. https://doi.org/10.1007/s00122-019-03481-3
10.1007/s00122-019-03481-331768603Qiao J, Liu F, Chen Y, Lian Y (2011) Research Progress on inheritance of fruit shape in horticultural crops. Acta Horti Sinica 38:1385-1396. https://doi.org/10.16420/j.issn.0513-353x.2011.07.024 (Abstract in English)
10.16420/j.issn.0513-353x.2011.07.024Rao PG, Behera T, Gaikwad AB, Munshi A, Srivastava A, Boopalakrishnan G, Vinod (2021) Genetic analysis and QTL mapping of yield and fruit traits in bitter gourd (Momordica charantia L.). Sci Rep 11:4109. https://doi.org/10.1038/s41598-021-83548-8
10.1038/s41598-021-83548-833603131PMC7893057Shu-Ping Q, Dan Y, Hai-Yang Y, Fang-Yuan C, Ke-Xin W, Wen-Qi D, Wen-Long X, Yun-Li W (2023) QTL analysis of early flowering of female flowers in zucchini(Cucurbita pepo L.). J Integr Agr 22:3321-3330. https://doi.org/10.1016/j.jia.2022.09.009
10.1016/j.jia.2022.09.009Sierra-Orozco E, Shekasteband R, Illa-Berenguer E, Snouffer A, van der Knaap E, Lee TG, Hutton SF (2021) Identification and characterization of GLOBE, a major gene controlling fruit shape and impacting fruit size and marketability in tomato. Hortic Res 8:138. https://doi.org/10.1038/s41438-021-00574-3
10.1038/s41438-021-00574-334075031PMC8169893Tan SP, Kha TC, Parks SE, Roach PD (2016) Bitter melon (Momordica charantia L.) bioactive composition and health benefits: A review. Food Rev Int 32:181-202. https://doi.org/10.1080/87559129.2015.1057843
10.1080/87559129.2015.1057843Van Ooijen JW (2006) Joinmap4, software for calculation of genetic linkage maps in experimental populations. Kyazma B.V, Wageningen.
Wang H, Sun J, Yang F, Weng Y, Chen P, Du S, Wei A, Li Y (2021) CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). Theor Appl Genet 134:2429-2441. https://doi.org/10.1007/s00122-021-03833-y
10.1007/s00122-021-03833-y34043036Wang J, Zhang Y, Du Y, Ren W, Li H, Sun W, Ge C, Zhang Y (2022) SEA v2.0: an R software package for mixed major genes plus polygenes inheritance analysis of quantitative traits. Acta Agr Sinica 48:1416-1424. https://doi.org/10.3724/SP.J.1006.2022.14088 (Abstract in English)
10.3724/SP.J.1006.2022.14088Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, et al. (2020) Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Hortic Res 7:3. https://doi.org/10.1038/s41438-019-0226-3
10.1038/s41438-019-0226-331908806PMC6938495Wang Z, Xiang C (2013) Genetic mapping of QTLs for horticulture traits in a F2-3 population of bitter gourd (Momordica charantia L.). Euphytica 193:235-250. https://doi.org/10.1007/s10681-013-0932-0
10.1007/s10681-013-0932-0Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527-1530. https://doi.org/10.1126/science.1153040
10.1126/science.115304018339939Xie Y, Liu X, Sun C, Song X, Li X, Cui H, Guo J, Liu L, Ying A, et al. (2023) CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. Hortic Res 10:uhad007. https://doi.org/10.1093/hr/uhad007
10.1093/hr/uhad00736960430PMC10028494Xin T, Zhang Z, Li S, Zhang S, Li Q, Zhang ZH, Huang S, Yang X (2019) Genetic regulation of ethylene dosage for cucumber fruit elongation. Plant Cell 31:1063-1076. https://doi.org/10.1105/tpc.18.00957
10.1105/tpc.18.0095730914499PMC6533019Zhang Z, Wang B, Wang S, Lin T, Yang L, Zhao Z, Zhang Z, Huang S, Yang X (2020) Genome-wide target mapping shows histone deacetylase complex1 regulates cell proliferation in cucumber fruit. Plant physiol 182:167-184. https://doi.org/10.1104/pp.19.00532
10.1104/pp.19.0053231378719PMC6945849Zhong J, Cheng J, Cui J, Hu F, Dong J, Liu J, Zou Y, Hu K (2022) MC03g0810, an important candidate gene controlling black seed coat color in bitter gourd (Momordica spp.).Front Plant Sci 13:875631. https://doi.org/ 10.3389/fpls.2022.875631
10.3389/fpls.2022.87563135574132PMC9094142Zhong J, Cui J, Liu J, Zhong C, Hu F, Dong J, Cheng J, Hu K (2023) Fine-mapping and candidate gene analysis of the Mcgy1 locus responsible for gynoecy in bitter gourd (Momordica spp.).Theor Appl Genet 136:81. https://doi.org/10.1007/s00122-023-04314-0
10.1007/s00122-023-04314-036952023- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 43
- No :4
- Pages :448-460
- Received Date : 2024-07-15
- Revised Date : 2024-10-23
- Accepted Date : 2025-03-05
- DOI :https://doi.org/10.7235/HORT.20250040


Horticultural Science and Technology








