All Issue

2025 Vol.43, Issue 5 Preview Page

Research Article

31 October 2025. pp. 604-622
Abstract
References
1

Aazami MA, Asghari-Aruq M, Hassanpouraghdam MB, Ercisli S, Baron M, Sochor J (2021) Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants 10:1877. https://doi.org/10.3390/plants10101877

10.3390/plants1009187734579411PMC8470009
2

Amini S, Ghobadi C, Yamchi A (2015) Proline accumulation and osmotic stress: an overview of P5CS gene in plants. J Plant Mol Breed 3:44-55. https://doi.org/10.22058/jpmb.2015.17022

10.22058/jpmb.2015.17022
3

Anfoka G, Moshe A, Fridman L, Amrani L, Rotem O, Kolot M, Zeidan M, Czosnek H, Gorovits R (2016) Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Scientific Reports 6:1-13. https://doi.org/10.1038/srep19715

10.1038/srep1971526792235PMC4726131
4

Argosubekti N (2020) A review of heat stress signaling in plants. In: IOP Conference Series: Earth and Environmental Science, Vol 484. IOP Publishing, p 012041.

10.1088/1755-1315/484/1/012041
5

Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759

10.1146/annurev.arplant.59.032607.09275918444897
6

Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. https://doi.org/10.1093/jxb/erh196

10.1093/jxb/erh19615258166
7

Banks JM (2018) Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ Exp Bot 155:118-127. https://doi.org/10.1016/j.envexpbot.2018.06.022

10.1016/j.envexpbot.2018.06.022
8

Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485-493. https://doi.org/10.1104/pp.102.018093

10.1104/pp.102.01809312805581PMC166991
9

Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. https://doi.org/10.1007/BF00018060

10.1007/BF00018060
10

Becker C (2014) Impact of radiation, temperature and growth stage on the concentration of flavonoid glycosides and caffeic acid derivatives in red leaf lettuce (Lactuca sativa L.). Dissertation, Technische Universität Berlin. https://doi.org/10.14279/depositonce-3934

10.14279/depositonce-3934
11

Bhandari SR, Kim YH, Lee JG (2018) Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Hortic Sci Technol 36:619-629. https://doi.org/10.12972/kjhst.20180062

10.12972/kjhst.20180062
12

Bron IU, Ribeiro RV, Azzolini M, Jacomino AP, Machado EC (2004) Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' papaya fruit (Carica papaya L.). Postharvest Biol Technol 33:163-173. https://doi.org/10.1016/j.postharvbio.2004.02.004

10.1016/j.postharvbio.2004.02.004
13

Carotti L, Graamans L, Puksic F, Butturini M, Meinen E, Heuvelink E, Stanghellini C (2020) Plant factories are heating up: hunting for the best combination of light intensity, air temperature and root-zone temperature in lettuce (Lactuca sativa L.) production. Front Plant Sci 11:592171. https://doi.org/10.3389/fpls.2020.592171

10.3389/fpls.2020.59217133584743PMC7876451
14

Chen S, Qi Y, Li C, Domen K, Zhang F (2018) Surface strategies for particulate photocatalysts toward artificial photosynthesis. Joule 2:2260-2288. http://doi.org/10.1016/j.joule.2018.07.030

10.1016/j.joule.2018.07.030
15

Chen Z, Shah Jahan M, Mao P, Wang M, Liu X, Guo S (2021) Functional growth, photosynthesis and nutritional property analyses of lettuce (Lactuca sativa L.) grown under different temperature and light intensity. J Hortic Sci Biotechnol 96:53-61. https://doi.org/10.1080/14620316.2020.1807416

10.1080/14620316.2020.1807416
16

Cheowtirakul C, Linh ND (2010) The study of biosurfactant as a cleaning agent for insecticide residue in leafy vegetables. Assump Univ J Technol 14:75-87

17

Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856-867

10.1111/tpj.1329927801967
18

Demmig-Adams B, Koh SC, Cohu CM, Muller O, Stewart JJ, Adams WW III (2014) Non-photochemical fluorescence quenching in contrasting plant species and environments. In: Demmig-Adams B, Garab G, Adams W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht, pp 531-552. https://doi.org/10.1007/978-94-017-9032-1_24

10.1007/978-94-017-9032-1_24
19

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, et al. (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147

10.3389/fpls.2017.0114728706531PMC5489704
20

Fu W, Li P, Wu Y (2012) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce (Lactuca sativa L.). Sci Hortic 135:45-51. https://doi.org/10.1016/j.scienta.2011.12.004

10.1016/j.scienta.2011.12.004
21

Giordano M, Petropoulos SA, Rouphael Y (2021) Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11:463. https://doi.org/10.3390/agriculture11050463

10.3390/agriculture11050463
22

Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24-35. https://doi.org/10.1016/j.scienta.2012.02.002

10.1016/j.scienta.2012.02.002
23

Guan H, Sun Y, Hou W, Ge Z, Zhao X, Wang D (2024) Effects of hydroxyl radical on listeria monocytogenes in fresh-cut iceberg lettuce (Lactuca sativa var. iceberg): Survival, membrane permeability, microstructure and virulence gene expression. LWT 213:117040. https://doi.org/10.1016/j.lwt.2024.117040

10.1016/j.lwt.2024.117040
24

Guidi L, Lo Piccolo E, Landi M (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci 10:174. https://doi.org/10.3389/fpls.2019.00174

10.3389/fpls.2019.0017430838014PMC6382737
25

Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R, Woch W, Hasanuzzaman M (2018) Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiol Biochem 127:446-456. https://doi.org/10.1016/j.plaphy.2018.04.018

10.1016/j.plaphy.2018.04.01829689508
26

Heidari P, Amerian MR, Barcaccia G (2021) Hormone Profiles and Antioxidant Activity of Cultivated and Wild Tomato (Solanum lycopersicum L.) Seedlings under Low-Temperature Stress. Agronomy 11:1146. https://doi.org/10.3390/agronomy11061146

10.3390/agronomy11061146
27

Hetherington SE, He J, Smillie RM (1989) Photoinhibition at low temperature in chilling-sensitive and-resistant plants. Plant Physiol 90:1609-1615. http://doi.org/10.1104/pp.90.4.1609

10.1104/pp.90.4.160916666971PMC1061931
28

Hou L, Zhang G, Zhao F, Zhu D, Fan X, Zhang Z, Liu X (2018) VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci 9:726. https://doi.org/10.3389/fpls.2018.00726

10.3389/fpls.2018.0072629967626PMC6016009
29

Hou W, Sun AH, Chen HL, Yang FS, Pan JL, Guan MY (2016) Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) seedlings. Biol Plant 60:148-154. https://doi.org/10.1007/s10535-015-0575-1

10.1007/s10535-015-0575-1
30

Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19-39. https://doi.org/10.1007/BF02185436

10.1007/BF0218543624317651
31

Hussain MA, Li S, Gao H, Feng C, Sun P, Sui X, Jing Y, Xu K, Zhou Y, et al. (2023) Comparative analysis of physiological variations and genetic architecture for cold stress response in soybean (Glycine max (L.) Merr.) germplasm. Front Plant Sci 13:1095335. https://doi.org/10.3389/fpls.2022.1095335

10.3389/fpls.2022.109533536684715PMC9852849
32

Jan MF, Li M, Liaqat W, Altaf MT, Liu C, Ahmad H, Khan EH, Ali Z, Barutçular C, et al. (2024) Chlorophyll fluorescence: a smart tool for maize (Zea mays L.) improvement. Cereal Res Commun:1-32. http://doi.org/10.1007/s42976-024-00573-9

10.1007/s42976-024-00573-9
33

Janka E, Körner O, Rosenqvist E, Ottosen CO (2015) Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora Tzvelev). Plant Physiol Biochem 90:14-22. https://doi.org/10.1016/j.plaphy.2015.02.019

10.1016/j.plaphy.2015.02.01925749731
34

Jenni S, Truco MJ, Michelmore RW (2013) Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce (Lactuca sativa L.). Theor Appl Genet 126:3065-3079. https://doi.org/10.1007/s00122-013-2193-7

10.1007/s00122-013-2193-724078012
35

Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, et al. (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y

10.1007/s11738-016-2113-y
36

Khan S, Aijun L, Zhang S, Hu Q, Zhu YG (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce (Lactuca sativa L.) grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater 152:506-515. https://doi.org/10.1016/j.jhazmat.2007.07.014

10.1016/j.jhazmat.2007.07.01417706349
37

Koç E, İşlek C, Üstün AS (2010) Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi Univ J Sci 23:1-6

38

Koseki S, Isobe S (2005) Prediction of pathogen growth on iceberg lettuce (Lactuca sativa L. var. capitata) under real temperature history during distribution from farm to table. Int J Food Microbiol 104:239-248. https://doi.org/10.1016/j.ijfoodmicro.2005.02.012

10.1016/j.ijfoodmicro.2005.02.01215979180
39

Li B, Gao K, Ren H, Tang W (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60:757-779. http://doi.org/10.1111/jipb.12701

10.1111/jipb.1270130030890
40

Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod 31:13-19. https://doi.org/10.1016/j.indcrop.2009.07.015

10.1016/j.indcrop.2009.07.015
41

Li M, Yue T, Han J, Wang J, Xiao H, Shang F (2024) Exogenous glucose irrigation alleviates cold stress by regulating soluble sugars, ABA and photosynthesis in melon (Cucumis melo L.) seedlings. Plant Physiol Biochem 217:109214. https://doi.org/10.1016/j.plaphy. 2024.109214

10.1016/j.plaphy.2024.10921439454537
42

Liu H, Shen J, Yuan C, Lu D, Acharya BR, Wang M, Chen D, Zhang W (2021) The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis thaliana. Front Plant Sci 12:668792. https://doi.org/10.3389/fpls.2021.668792

10.3389/fpls.2021.66879234113366PMC8186832
43

Lu T, Song Y, Yu H, Li Q, Xu J, Qin Y, Zhang G, Liu Y, Jiang W (2022) Cold stress resistance of tomato (Solanum lycopersicum L.) seedlings is enhanced by light supplementation from underneath the canopy. Front Plant Sci 13:831314. https://doi.org/10.3389/fpls.2022. 831314

10.3389/fpls.2022.83131435498645PMC9039533
44

Magwaza LS, Opara UL (2015) Analytical methods for determination of sugars and sweetness of horticultural products-A review. Sci Horticu 184:179-192. http://doi.org/10.1016/j.scienta.2015.01.001

10.1016/j.scienta.2015.01.001
45

Mattila H, Mishra KB, Kuusisto I, Mishra A, Novotná K, Šebela D, Tyystjärvi E (2020) Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis. Planta 252:17. https://doi.org/10.1007/s00425-020-03423-0

10.1007/s00425-020-03423-032671474PMC7363673
46

May P, Liao W, Wu Y, Shuai B, Richard McCombie W, Zhang MQ, Liu QA (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145. https://doi.org/10.1038/ncomms3145

10.1038/ncomms314523900278
47

Mesa T, Romero A, Munné-Bosch S (2024) Differential response of roots and leaves to combined heat and salinity stresses in tomato plants (Solanum lycopersicum L.). Environ Exp Bot 226:105890. https://doi.org/10.1016/j.envexpbot.2023.105890

10.1016/j.envexpbot.2024.105890
48

Mishra A, Mishra KB, Surá K, Veselá B, Klem K, Urban O (2023) Non-photochemical quenching in natural accessions of Arabidopsis thaliana during cold acclimation. Environ Exp Bot 211:105372. https://doi.org/10.1016/j.envexpbot.2023.105372

10.1016/j.envexpbot.2023.105372
49

Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983-3998. https://doi.org/10.1093/jxb/ert208

10.1093/jxb/ert20823913954
50

Na YW, Jeong HJ, Lee SY, Choi HG, Kim SH, Rho IR (2014) Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species (Fragaria spp.). Hortic Environ Biotechnol 55:280-286. https://doi.org/10.1007/s13580-014-0006-9

10.1007/s13580-014-0006-9
51

Oh S, Koh SC (2014) Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Hortic Environ Biotechnol 55:363-371. https://doi.org/10.1007/s13580-014-0055-0

10.1007/s13580-014-0055-0
52

Oliveira G, Peñuelas J (2005) Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. Plant Ecol 175:179-191. https://doi.org/10.1007/s11258-005-4876-x

10.1007/s11258-005-4876-x
53

Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans (II. CO2 assimilation and metabolite contents). Plant Physiol 112:1253-1260. https://doi.org/10.1104/pp.112.3.1253

10.1104/pp.112.3.125312226443PMC158053
54

Pérez-Torres E, Bascuñán L, Sierra A, Bravo L, Corcuera L (2006) Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Polar Biol 29:909-916. https://doi.org/10.1007/s00300-006-0131-8

10.1007/s00300-006-0131-8
55

Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt‐adapted halophyte Atriplex centralasiatica. New Phytol 159:479-486. https://doi.org/10.1046/j.1469-8137.2003.00825.x

10.1046/j.1469-8137.2003.00825.x33873362
56

Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903-1916. https://doi.org/10.1104/pp.15.01935

10.1104/pp.15.0193526864015PMC4825125
57

Sakamoto M, Suzuki T (2015) Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am J Plant Sci 6:2350-2358. https://doi.org/10.4236/ajps.2015.614238

10.4236/ajps.2015.614238
58

Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant 153:284-298. https://doi.org/10.1111/ppl.12245

10.1111/ppl.1224524962705
59

Shin YK, Bhandari SR, Cho MC, Lee JG (2020a) Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Hortic Environ Biotechnol 61:433-443. https://doi.org/10.1007/s13580-020-00231-z

10.1007/s13580-020-00231-z
60

Shin YK, Bhandari SR, Jo JS, Song JW, Cho MC, Yang EY, Lee JG (2020b) Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy 10:1627. https://doi.org/10.3390/agronomy10111627

10.3390/agronomy10111627
61

Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:1-20. https://doi.org/10.1186/1471-2229-14-111

10.1186/1471-2229-14-11124774695PMC4036403
62

Streb P, Aubert S, Gout E, Feierabend J, Bligny R (2008) Cross tolerance to heavy-metal and cold-induced photoinhibiton in leaves of Pisum sativum acclimated to low temperature. Physiol Mol Biol Plants 14:185-193. https://doi.org/10.1007/s12298-008-0018-y

10.1007/s12298-008-0018-y23572886PMC3550610
63

Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306-312. https://doi.org/10.1016/j.sajb.2016.03.011

10.1016/j.sajb.2016.03.011
64

Toscano S, Trivellini A, Cocetta G, Bulgari R, Francini A, Romano D, Ferrante A (2019) Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front Plant Sci 10:1212. https://doi.org/10.3389/fpls.2019.01212

10.3389/fpls.2019.0121231636647PMC6788460
65

Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325-346. https://doi.org/10.1007/s12210-008-0022-8

10.1007/s12210-008-0022-8
66

Tsai YC, Chen KC, Cheng TS, Lee C, Lin SH, Tung CW (2019) Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol 19:1-17. https://doi.org/10.1186/s12870-019-1983-8

10.1186/s12870-019-1983-831519149PMC6743182
67

van Buer J, Prescher A, Baier M (2019) Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Sci Rep 9:3022. https://doi.org/10.1038/s41598-019-39838-3

10.1038/s41598-019-39838-330816299PMC6395587
68

Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140. https://doi.org/10.1199/tab.0140

10.1199/tab.014022303265PMC3244962
69

Wang Y, Wang L, Zhou J, Hu S, Chen H, Xiang J, Zhang Y, Zeng Y, Shi Q, et al. (2019) Research progress on heat stress of rice at flowering stage. Rice Sci 26:1-10. http://doi.org/10.1016/j.rsci.2018.06.009

10.1016/j.rsci.2018.06.009
70

Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7:bio 035279. https://doi.org/10.1242/bio.035279

10.1242/bio.03527930127094PMC6262865
71

Warren CR (2008) Rapid measurement of chlorophylls with a microplate reader. J Plant Nutr 31:1321-1332. https://doi.org/10.1080/01904160802135092

10.1080/01904160802135092
72

Wei Y, Li Z, Lv L, Yang Q, Cheng Z, Zhang J, Zhang W, Luan Y, Wu A, et al. (2023) Overexpression of MbICE3 increased the tolerance to cold and drought in lettuce (Lactuca sativa L.). In Vitro Cell Dev Biol Plant 59:767-782. http://doi.org/10.1007/s11627-023-10381-1

10.1007/s11627-023-10381-1
73

Weng J, Li P, Rehman A, Wang L, Gao X, Niu Q (2021) Physiological response and evaluation of melon (Cucumis melo L.) germplasm resources under high temperature and humidity stress at seedling stage. Sci Hortic 288:110317. https://doi.org/10.1016/j.scienta.2021.110317

10.1016/j.scienta.2021.110317
74

Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:1-14. https://doi.org/10.1186/1746-4811-4-27

10.1186/1746-4811-4-2719014425PMC2628343
75

Xu H, Huang C, Jiang X, Zhu J, Gao X, Yu C (2022) Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera seedlings. Horticulturae 8:494. https://doi.org/10.3390/horticulturae8060494

10.3390/horticulturae8060494
76

Yamamoto Y (2016) Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci 7:1136. http://doi.org/10.3389/fpls.2016.01136

10.3389/fpls.2016.0113627532009PMC4969305
77

Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57-64. https://doi.org/10.1023/A:1005884717655

10.1023/A:1005884717655
78

Yan Z, Ma T, Guo S, Liu R, Li M (2021) Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Sci Hortic 280:109933. https://doi.org/10.1016/j.scienta.2021.109933

10.1016/j.scienta.2021.109933
79

Yao J, Sun D, Cen H, Xu H, Weng H, Yuan F, He Y (2018) Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Front Plant Sci 9:603. https://doi.org/10.3389/fpls.2018.00603

10.3389/fpls.2018.0060329868063PMC5958224
80

Yaseen I, Choi S, Mukhtar T, Park JI, Kim HT (2025) Quantification of growth and physiological characteristics in tolerant and sensitive watermelon lines under cold treatment. Hortic Environ Biotechnol 66:189-204. https://doi.org/10.1007/s13580-024-00663-x

10.1007/s13580-024-00663-x
81

Yu Q, Sun W, Han Y, Hao J, Qin X, Liu C, Fan S (2022) Exogenous spermidine improves the sucrose metabolism of lettuce to resist high-temperature stress. Plant Growth Regul 96:497-509. http://doi.org/10.1007/s10725-022-00800-5

10.1007/s10725-022-00800-5
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 43
  • No :5
  • Pages :604-622
  • Received Date : 2025-03-22
  • Revised Date : 2025-04-21
  • Accepted Date : 2025-05-20