Research Article
Aazami MA, Asghari-Aruq M, Hassanpouraghdam MB, Ercisli S, Baron M, Sochor J (2021) Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants 10:1877. https://doi.org/10.3390/plants10101877
10.3390/plants1009187734579411PMC8470009Amini S, Ghobadi C, Yamchi A (2015) Proline accumulation and osmotic stress: an overview of P5CS gene in plants. J Plant Mol Breed 3:44-55. https://doi.org/10.22058/jpmb.2015.17022
10.22058/jpmb.2015.17022Anfoka G, Moshe A, Fridman L, Amrani L, Rotem O, Kolot M, Zeidan M, Czosnek H, Gorovits R (2016) Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Scientific Reports 6:1-13. https://doi.org/10.1038/srep19715
10.1038/srep1971526792235PMC4726131Argosubekti N (2020) A review of heat stress signaling in plants. In: IOP Conference Series: Earth and Environmental Science, Vol 484. IOP Publishing, p 012041.
10.1088/1755-1315/484/1/012041Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
10.1146/annurev.arplant.59.032607.09275918444897Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. https://doi.org/10.1093/jxb/erh196
10.1093/jxb/erh19615258166Banks JM (2018) Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environ Exp Bot 155:118-127. https://doi.org/10.1016/j.envexpbot.2018.06.022
10.1016/j.envexpbot.2018.06.022Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485-493. https://doi.org/10.1104/pp.102.018093
10.1104/pp.102.01809312805581PMC166991Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. https://doi.org/10.1007/BF00018060
10.1007/BF00018060Becker C (2014) Impact of radiation, temperature and growth stage on the concentration of flavonoid glycosides and caffeic acid derivatives in red leaf lettuce (Lactuca sativa L.). Dissertation, Technische Universität Berlin. https://doi.org/10.14279/depositonce-3934
10.14279/depositonce-3934Bhandari SR, Kim YH, Lee JG (2018) Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Hortic Sci Technol 36:619-629. https://doi.org/10.12972/kjhst.20180062
10.12972/kjhst.20180062Bron IU, Ribeiro RV, Azzolini M, Jacomino AP, Machado EC (2004) Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' papaya fruit (Carica papaya L.). Postharvest Biol Technol 33:163-173. https://doi.org/10.1016/j.postharvbio.2004.02.004
10.1016/j.postharvbio.2004.02.004Carotti L, Graamans L, Puksic F, Butturini M, Meinen E, Heuvelink E, Stanghellini C (2020) Plant factories are heating up: hunting for the best combination of light intensity, air temperature and root-zone temperature in lettuce (Lactuca sativa L.) production. Front Plant Sci 11:592171. https://doi.org/10.3389/fpls.2020.592171
10.3389/fpls.2020.59217133584743PMC7876451Chen S, Qi Y, Li C, Domen K, Zhang F (2018) Surface strategies for particulate photocatalysts toward artificial photosynthesis. Joule 2:2260-2288. http://doi.org/10.1016/j.joule.2018.07.030
10.1016/j.joule.2018.07.030Chen Z, Shah Jahan M, Mao P, Wang M, Liu X, Guo S (2021) Functional growth, photosynthesis and nutritional property analyses of lettuce (Lactuca sativa L.) grown under different temperature and light intensity. J Hortic Sci Biotechnol 96:53-61. https://doi.org/10.1080/14620316.2020.1807416
10.1080/14620316.2020.1807416Cheowtirakul C, Linh ND (2010) The study of biosurfactant as a cleaning agent for insecticide residue in leafy vegetables. Assump Univ J Technol 14:75-87
Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856-867
10.1111/tpj.1329927801967Demmig-Adams B, Koh SC, Cohu CM, Muller O, Stewart JJ, Adams WW III (2014) Non-photochemical fluorescence quenching in contrasting plant species and environments. In: Demmig-Adams B, Garab G, Adams W, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Springer, Dordrecht, pp 531-552. https://doi.org/10.1007/978-94-017-9032-1_24
10.1007/978-94-017-9032-1_24Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, et al. (2017) Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci 8:1147. https://doi.org/10.3389/fpls.2017.01147
10.3389/fpls.2017.0114728706531PMC5489704Fu W, Li P, Wu Y (2012) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce (Lactuca sativa L.). Sci Hortic 135:45-51. https://doi.org/10.1016/j.scienta.2011.12.004
10.1016/j.scienta.2011.12.004Giordano M, Petropoulos SA, Rouphael Y (2021) Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11:463. https://doi.org/10.3390/agriculture11050463
10.3390/agriculture11050463Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24-35. https://doi.org/10.1016/j.scienta.2012.02.002
10.1016/j.scienta.2012.02.002Guan H, Sun Y, Hou W, Ge Z, Zhao X, Wang D (2024) Effects of hydroxyl radical on listeria monocytogenes in fresh-cut iceberg lettuce (Lactuca sativa var. iceberg): Survival, membrane permeability, microstructure and virulence gene expression. LWT 213:117040. https://doi.org/10.1016/j.lwt.2024.117040
10.1016/j.lwt.2024.117040Guidi L, Lo Piccolo E, Landi M (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci 10:174. https://doi.org/10.3389/fpls.2019.00174
10.3389/fpls.2019.0017430838014PMC6382737Hawrylak-Nowak B, Dresler S, Rubinowska K, Matraszek-Gawron R, Woch W, Hasanuzzaman M (2018) Selenium biofortification enhances the growth and alters the physiological response of lamb's lettuce grown under high temperature stress. Plant Physiol Biochem 127:446-456. https://doi.org/10.1016/j.plaphy.2018.04.018
10.1016/j.plaphy.2018.04.01829689508Heidari P, Amerian MR, Barcaccia G (2021) Hormone Profiles and Antioxidant Activity of Cultivated and Wild Tomato (Solanum lycopersicum L.) Seedlings under Low-Temperature Stress. Agronomy 11:1146. https://doi.org/10.3390/agronomy11061146
10.3390/agronomy11061146Hetherington SE, He J, Smillie RM (1989) Photoinhibition at low temperature in chilling-sensitive and-resistant plants. Plant Physiol 90:1609-1615. http://doi.org/10.1104/pp.90.4.1609
10.1104/pp.90.4.160916666971PMC1061931Hou L, Zhang G, Zhao F, Zhu D, Fan X, Zhang Z, Liu X (2018) VvBAP1 is involved in cold tolerance in Vitis vinifera L. Front Plant Sci 9:726. https://doi.org/10.3389/fpls.2018.00726
10.3389/fpls.2018.0072629967626PMC6016009Hou W, Sun AH, Chen HL, Yang FS, Pan JL, Guan MY (2016) Effects of chilling and high temperatures on photosynthesis and chlorophyll fluorescence in leaves of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) seedlings. Biol Plant 60:148-154. https://doi.org/10.1007/s10535-015-0575-1
10.1007/s10535-015-0575-1Huner NPA, Öquist G, Hurry VM, Krol M, Falk S, Griffith M (1993) Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth Res 37:19-39. https://doi.org/10.1007/BF02185436
10.1007/BF0218543624317651Hussain MA, Li S, Gao H, Feng C, Sun P, Sui X, Jing Y, Xu K, Zhou Y, et al. (2023) Comparative analysis of physiological variations and genetic architecture for cold stress response in soybean (Glycine max (L.) Merr.) germplasm. Front Plant Sci 13:1095335. https://doi.org/10.3389/fpls.2022.1095335
10.3389/fpls.2022.109533536684715PMC9852849Jan MF, Li M, Liaqat W, Altaf MT, Liu C, Ahmad H, Khan EH, Ali Z, Barutçular C, et al. (2024) Chlorophyll fluorescence: a smart tool for maize (Zea mays L.) improvement. Cereal Res Commun:1-32. http://doi.org/10.1007/s42976-024-00573-9
10.1007/s42976-024-00573-9Janka E, Körner O, Rosenqvist E, Ottosen CO (2015) Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora Tzvelev). Plant Physiol Biochem 90:14-22. https://doi.org/10.1016/j.plaphy.2015.02.019
10.1016/j.plaphy.2015.02.01925749731Jenni S, Truco MJ, Michelmore RW (2013) Quantitative trait loci associated with tipburn, heat stress-induced physiological disorders, and maturity traits in crisphead lettuce (Lactuca sativa L.). Theor Appl Genet 126:3065-3079. https://doi.org/10.1007/s00122-013-2193-7
10.1007/s00122-013-2193-724078012Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, et al. (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. https://doi.org/10.1007/s11738-016-2113-y
10.1007/s11738-016-2113-yKhan S, Aijun L, Zhang S, Hu Q, Zhu YG (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce (Lactuca sativa L.) grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater 152:506-515. https://doi.org/10.1016/j.jhazmat.2007.07.014
10.1016/j.jhazmat.2007.07.01417706349Koç E, İşlek C, Üstün AS (2010) Effect of cold on protein, proline, phenolic compounds and chlorophyll content of two pepper (Capsicum annuum L.) varieties. Gazi Univ J Sci 23:1-6
Koseki S, Isobe S (2005) Prediction of pathogen growth on iceberg lettuce (Lactuca sativa L. var. capitata) under real temperature history during distribution from farm to table. Int J Food Microbiol 104:239-248. https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
10.1016/j.ijfoodmicro.2005.02.01215979180Li B, Gao K, Ren H, Tang W (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60:757-779. http://doi.org/10.1111/jipb.12701
10.1111/jipb.1270130030890Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crops Prod 31:13-19. https://doi.org/10.1016/j.indcrop.2009.07.015
10.1016/j.indcrop.2009.07.015Li M, Yue T, Han J, Wang J, Xiao H, Shang F (2024) Exogenous glucose irrigation alleviates cold stress by regulating soluble sugars, ABA and photosynthesis in melon (Cucumis melo L.) seedlings. Plant Physiol Biochem 217:109214. https://doi.org/10.1016/j.plaphy. 2024.109214
10.1016/j.plaphy.2024.10921439454537Liu H, Shen J, Yuan C, Lu D, Acharya BR, Wang M, Chen D, Zhang W (2021) The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis thaliana. Front Plant Sci 12:668792. https://doi.org/10.3389/fpls.2021.668792
10.3389/fpls.2021.66879234113366PMC8186832Lu T, Song Y, Yu H, Li Q, Xu J, Qin Y, Zhang G, Liu Y, Jiang W (2022) Cold stress resistance of tomato (Solanum lycopersicum L.) seedlings is enhanced by light supplementation from underneath the canopy. Front Plant Sci 13:831314. https://doi.org/10.3389/fpls.2022. 831314
10.3389/fpls.2022.83131435498645PMC9039533Magwaza LS, Opara UL (2015) Analytical methods for determination of sugars and sweetness of horticultural products-A review. Sci Horticu 184:179-192. http://doi.org/10.1016/j.scienta.2015.01.001
10.1016/j.scienta.2015.01.001Mattila H, Mishra KB, Kuusisto I, Mishra A, Novotná K, Šebela D, Tyystjärvi E (2020) Effects of low temperature on photoinhibition and singlet oxygen production in four natural accessions of Arabidopsis. Planta 252:17. https://doi.org/10.1007/s00425-020-03423-0
10.1007/s00425-020-03423-032671474PMC7363673May P, Liao W, Wu Y, Shuai B, Richard McCombie W, Zhang MQ, Liu QA (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145. https://doi.org/10.1038/ncomms3145
10.1038/ncomms314523900278Mesa T, Romero A, Munné-Bosch S (2024) Differential response of roots and leaves to combined heat and salinity stresses in tomato plants (Solanum lycopersicum L.). Environ Exp Bot 226:105890. https://doi.org/10.1016/j.envexpbot.2023.105890
10.1016/j.envexpbot.2024.105890Mishra A, Mishra KB, Surá K, Veselá B, Klem K, Urban O (2023) Non-photochemical quenching in natural accessions of Arabidopsis thaliana during cold acclimation. Environ Exp Bot 211:105372. https://doi.org/10.1016/j.envexpbot.2023.105372
10.1016/j.envexpbot.2023.105372Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983-3998. https://doi.org/10.1093/jxb/ert208
10.1093/jxb/ert20823913954Na YW, Jeong HJ, Lee SY, Choi HG, Kim SH, Rho IR (2014) Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species (Fragaria spp.). Hortic Environ Biotechnol 55:280-286. https://doi.org/10.1007/s13580-014-0006-9
10.1007/s13580-014-0006-9Oh S, Koh SC (2014) Photosystem II photochemical efficiency and photosynthetic capacity in leaves of tea plant (Camellia sinensis L.) under winter stress in the field. Hortic Environ Biotechnol 55:363-371. https://doi.org/10.1007/s13580-014-0055-0
10.1007/s13580-014-0055-0Oliveira G, Peñuelas J (2005) Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L. Plant Ecol 175:179-191. https://doi.org/10.1007/s11258-005-4876-x
10.1007/s11258-005-4876-xPastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans (II. CO2 assimilation and metabolite contents). Plant Physiol 112:1253-1260. https://doi.org/10.1104/pp.112.3.1253
10.1104/pp.112.3.125312226443PMC158053Pérez-Torres E, Bascuñán L, Sierra A, Bravo L, Corcuera L (2006) Robustness of activity of Calvin cycle enzymes after high light and low temperature conditions in Antarctic vascular plants. Polar Biol 29:909-916. https://doi.org/10.1007/s00300-006-0131-8
10.1007/s00300-006-0131-8Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt‐adapted halophyte Atriplex centralasiatica. New Phytol 159:479-486. https://doi.org/10.1046/j.1469-8137.2003.00825.x
10.1046/j.1469-8137.2003.00825.x33873362Ruban AV (2016) Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903-1916. https://doi.org/10.1104/pp.15.01935
10.1104/pp.15.0193526864015PMC4825125Sakamoto M, Suzuki T (2015) Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Am J Plant Sci 6:2350-2358. https://doi.org/10.4236/ajps.2015.614238
10.4236/ajps.2015.614238Sharma DK, Andersen SB, Ottosen CO, Rosenqvist E (2015) Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol Plant 153:284-298. https://doi.org/10.1111/ppl.12245
10.1111/ppl.1224524962705Shin YK, Bhandari SR, Cho MC, Lee JG (2020a) Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Hortic Environ Biotechnol 61:433-443. https://doi.org/10.1007/s13580-020-00231-z
10.1007/s13580-020-00231-zShin YK, Bhandari SR, Jo JS, Song JW, Cho MC, Yang EY, Lee JG (2020b) Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy 10:1627. https://doi.org/10.3390/agronomy10111627
10.3390/agronomy10111627Song Y, Chen Q, Ci D, Shao X, Zhang D (2014) Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol 14:1-20. https://doi.org/10.1186/1471-2229-14-111
10.1186/1471-2229-14-11124774695PMC4036403Streb P, Aubert S, Gout E, Feierabend J, Bligny R (2008) Cross tolerance to heavy-metal and cold-induced photoinhibiton in leaves of Pisum sativum acclimated to low temperature. Physiol Mol Biol Plants 14:185-193. https://doi.org/10.1007/s12298-008-0018-y
10.1007/s12298-008-0018-y23572886PMC3550610Taïbi K, Taïbi F, Abderrahim LA, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S Afr J Bot 105:306-312. https://doi.org/10.1016/j.sajb.2016.03.011
10.1016/j.sajb.2016.03.011Toscano S, Trivellini A, Cocetta G, Bulgari R, Francini A, Romano D, Ferrante A (2019) Effect of preharvest abiotic stresses on the accumulation of bioactive compounds in horticultural produce. Front Plant Sci 10:1212. https://doi.org/10.3389/fpls.2019.01212
10.3389/fpls.2019.0121231636647PMC6788460Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rend Lincei 19:325-346. https://doi.org/10.1007/s12210-008-0022-8
10.1007/s12210-008-0022-8Tsai YC, Chen KC, Cheng TS, Lee C, Lin SH, Tung CW (2019) Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biol 19:1-17. https://doi.org/10.1186/s12870-019-1983-8
10.1186/s12870-019-1983-831519149PMC6743182van Buer J, Prescher A, Baier M (2019) Cold-priming of chloroplast ROS signalling is developmentally regulated and is locally controlled at the thylakoid membrane. Sci Rep 9:3022. https://doi.org/10.1038/s41598-019-39838-3
10.1038/s41598-019-39838-330816299PMC6395587Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:e0140. https://doi.org/10.1199/tab.0140
10.1199/tab.014022303265PMC3244962Wang Y, Wang L, Zhou J, Hu S, Chen H, Xiang J, Zhang Y, Zeng Y, Shi Q, et al. (2019) Research progress on heat stress of rice at flowering stage. Rice Sci 26:1-10. http://doi.org/10.1016/j.rsci.2018.06.009
10.1016/j.rsci.2018.06.009Wang Z, Li G, Sun H, Ma L, Guo Y, Zhao Z, Gao H, Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biol Open 7:bio 035279. https://doi.org/10.1242/bio.035279
10.1242/bio.03527930127094PMC6262865Warren CR (2008) Rapid measurement of chlorophylls with a microplate reader. J Plant Nutr 31:1321-1332. https://doi.org/10.1080/01904160802135092
10.1080/01904160802135092Wei Y, Li Z, Lv L, Yang Q, Cheng Z, Zhang J, Zhang W, Luan Y, Wu A, et al. (2023) Overexpression of MbICE3 increased the tolerance to cold and drought in lettuce (Lactuca sativa L.). In Vitro Cell Dev Biol Plant 59:767-782. http://doi.org/10.1007/s11627-023-10381-1
10.1007/s11627-023-10381-1Weng J, Li P, Rehman A, Wang L, Gao X, Niu Q (2021) Physiological response and evaluation of melon (Cucumis melo L.) germplasm resources under high temperature and humidity stress at seedling stage. Sci Hortic 288:110317. https://doi.org/10.1016/j.scienta.2021.110317
10.1016/j.scienta.2021.110317Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:1-14. https://doi.org/10.1186/1746-4811-4-27
10.1186/1746-4811-4-2719014425PMC2628343Xu H, Huang C, Jiang X, Zhu J, Gao X, Yu C (2022) Impact of cold stress on leaf structure, photosynthesis, and metabolites in Camellia weiningensis and C. oleifera seedlings. Horticulturae 8:494. https://doi.org/10.3390/horticulturae8060494
10.3390/horticulturae8060494Yamamoto Y (2016) Quality control of photosystem II: the mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids. Front Plant Sci 7:1136. http://doi.org/10.3389/fpls.2016.01136
10.3389/fpls.2016.0113627532009PMC4969305Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increases in the fluorescence Fo level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynth Res 52:57-64. https://doi.org/10.1023/A:1005884717655
10.1023/A:1005884717655Yan Z, Ma T, Guo S, Liu R, Li M (2021) Leaf anatomy, photosynthesis and chlorophyll fluorescence of lettuce as influenced by arbuscular mycorrhizal fungi under high temperature stress. Sci Hortic 280:109933. https://doi.org/10.1016/j.scienta.2021.109933
10.1016/j.scienta.2021.109933Yao J, Sun D, Cen H, Xu H, Weng H, Yuan F, He Y (2018) Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Front Plant Sci 9:603. https://doi.org/10.3389/fpls.2018.00603
10.3389/fpls.2018.0060329868063PMC5958224Yaseen I, Choi S, Mukhtar T, Park JI, Kim HT (2025) Quantification of growth and physiological characteristics in tolerant and sensitive watermelon lines under cold treatment. Hortic Environ Biotechnol 66:189-204. https://doi.org/10.1007/s13580-024-00663-x
10.1007/s13580-024-00663-xYu Q, Sun W, Han Y, Hao J, Qin X, Liu C, Fan S (2022) Exogenous spermidine improves the sucrose metabolism of lettuce to resist high-temperature stress. Plant Growth Regul 96:497-509. http://doi.org/10.1007/s10725-022-00800-5
10.1007/s10725-022-00800-5- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 43
- No :5
- Pages :604-622
- Received Date : 2025-03-22
- Revised Date : 2025-04-21
- Accepted Date : 2025-05-20
- DOI :https://doi.org/10.7235/HORT.20250055


Horticultural Science and Technology








