All Issue

2023 Vol.41, Issue 1 Preview Page

Research Article

28 February 2023. pp. 81-90
Anwar SM, Majid M, Qayyum A, Awais M, Alnowami M, Khan MK (2018) Medical image analysis using convolutional neural networks: a review. J Med Syst 42:1-13. doi:10.1007/s10916-018-1088-1 10.1007/s10916-018-1088-130298337
Carney M, Webster B, Alvarado I, Phillips K, Howell N, Griffith J, Jongejan J, Pitaru A, Chen A (2020) Teachable machine: Approachable Web-based tool for exploring machine learning classification. In Extended abstracts of the 2020 CHI conference on human factors in computing systems, pp 1-8. doi:10.1145/3334480.3382839 10.1145/3334480.3382839
Cha MK, Kim JS, Cho YY (2014) Growth model of common ice plant (Mesembryanthemum crystallinum L.) using expolinear functions in a closed-type plant production system. Hortic Sci Technol 32:493-498. doi:10.7235/hort.2014.14013 10.7235/hort.2014.14013
Choi J (2018) A study on the standardization strategy for building of learning data set for machine learning applications. Journal of Digital Convergence 16:205-212. doi:10.14400/JDC.2018.16.10.205 10.14400/JDC.2018.16.10.205
Hao X, Jia J, Khattak AM, Zhang L, Guo X, Gao W, Wang M (2020) Growing period classification of Gynura bicolor DC using GL-CNN. Comput Electron Agric 174:105497. doi:10.1016/j.compag.2020.105497 10.1016/j.compag.2020.105497
Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580. doi:10.48550/arXiv.1207.0580 10.48550/arXiv.1207.0580
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular. California agricultural experiment station, p 347
Iitsuka S, Fujii N, Kokuryo D, Kaihara T, Nakano S (2019) CNN-based growth prediction of field crops for optimizing food supply chain. In: Ameri F, Stecke K, von Cieminski G, Kiritsis D, eds, Advances in Production Management Systems. Production Management for the Factory of the Future. APMS 2019. IFIP Advances in Information and Communication Technology, Vol 566. Springer Cham doi:10.1007/978-3-030-30000-5_20 10.1007/978-3-030-30000-5_20
Kate V, Shukla P (2021) A 3 Tier CNN model with deep discriminative feature extraction for discovering malignant growth in multi-scale histopathology images. Informatics in Medicine Unlocked 24:100616. doi:10.1016/j.imu.2021.100616 10.1016/j.imu.2021.100616
Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. doi:10.48550/arXiv.1412.6980 10.48550/arXiv.1412.6980
LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time-series. In Arbib MA (Ed.), The handbook of brain theory and neural networks MIT Press
Lee JW, Kang WH, Moon T, Hwang I, Kim D, Son JE (2020) Estimating the leaf area index of bell peppers according to growth stage using ray-tracing simulation and a long short-term memory algorithm. Hortic Environ Biotechnol 61:255-265. doi:10.1007/s13580-019-00214-9 10.1007/s13580-019-00214-9
Lee KJ, Kacorri H (2019) Hands holding clues for object recognition in teachable machines. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp 1-12. doi:10.1145/3290605.3300566 10.1145/3290605.3300566
Moon TW, Park JY, Son JE (2020) Estimation of Sweet Pepper Crop Fresh Weight with Convolutional Neural Network. J Bio-Env Con 29:381-387. doi:10.12791/KSBEC.2020.29.4.381 10.12791/KSBEC.2020.29.4.381
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on International Conference on Machine Learning, pp 807-814
Nam DS, Moon T, Lee JW, Son JE (2019) Estimating transpiration rates of hydroponically-grown paprika via an artificial neural network using aerial and root-zone environments and growth factors in greenhouses. Hortic Environ Biotechnol 60:913-923. doi:10.1007/s13580-019-00183-z 10.1007/s13580-019-00183-z
Rawat W, Wang Z (2017) Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput 29:2352-2449. doi:10.1162/neco_a_00990 10.1162/neco_a_0099028599112
Tran TT, Choi JW, Le TTH, Kim JW (2019) A comparative study of deep CNN in forecasting and classifying the macronutrient deficiencies on development of tomato plant. Appl Sci 9:1601. doi:10.3390/app9081601 10.3390/app9081601
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 41
  • No :1
  • Pages :81-90
  • Received Date :2022. 06. 22
  • Revised Date :2022. 09. 08
  • Accepted Date : 2022. 09. 30