Research Article
Adikari KE, Shrestha S, Ratnayake DT, Budhathoki A, Mohanasundaram S, Dailey MN (2021) Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environ Model Softw 144:105136. doi:10.1016/j.envsoft.2021.105136
10.1016/j.envsoft.2021.105136Agilandeeswari L, Prabukumar M, Radhesyam V, Phaneendra KLB, Farhan A (2022) Crop classification for agricultural applications in hyperspectral remote sensing images. Appl Sci 12:1670. doi:10.3390/app12031670
10.3390/app12031670Amirruddin AD, Muharam FM, Ismail MH, Ismail MF, Tan NP, Karam DS (2020) Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: Analysis of decision tree and random forest. Comput Electron Agric 169:105221. doi:10.1016/j.compag.2020.105221
10.1016/j.compag.2020.105221Ariana DP, Lu R (2010) Evaluation of internal defect and surface color of whole pickles using hyperspectral imaging. J Food Eng 96:583-590. doi:10.1016/j.jfoodeng.2009.09.005
10.1016/j.jfoodeng.2009.09.005Baek Y, Sul S, Cho YY (2023) Estimation of Days after Transplanting using an Artificial Intelligence CNN (Convolutional Neural Network) Model in a Closed-type Plant Factory. Hortic Sci Technol 41:81-90. doi:10.7235/HORT.20230008
10.7235/HORT.20230008Bansal M, Goyal A, Choudhary A (2022) A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short term memory algorithms in machine learning. Decis Anal J 3:100071. doi:10.1016/j.dajour.2022.100071
10.1016/j.dajour.2022.100071Boateng EY, Otoo J, Abaye DA (2020) Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: a review. Journal of Data Analysis and Information Processing 8:341-357. doi:10.4236/jdaip.2020.84020
10.4236/jdaip.2020.84020Bochkovskiy A, Wang CY, Liao HYM (2020) Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
10.48550/arXiv.2004.10934Chen LC, Wang BR, Chen IC, Shao CH (2010) Use of Chinese herbal medicine among menopausal women in Taiwan. Int J Gynaecol Obstet 109:63-66. doi:10.1016/j.ijgo.2009.10.014
10.1016/j.ijgo.2009.10.01419969298Chien KJ, Horng CT, Huang YS, Hsieh YH, Wang CJ, Yang JS, Lu CC, Chen F (2018) Effects of Lycium barbarum (goji berry) on dry eye disease in rats. Mol Med Rep 17:809-818. doi:10.3892/mmr.2017.7947
10.3892/mmr.2017.794729115477PMC5780158Chlebda DK, Rogulska A, Lojewski T (2017) Assessment of hyperspectral imaging system for colour measurement. Spectrochim Acta A Mol Biomol Spectrosc 185:55-62. doi:10.1016/j.saa.2017.05.037
10.1016/j.saa.2017.05.03728538191Choi JH, Park SH, Jung DH, Park YJ, Yang JS, Park JE, Lee H, Kim SM (2022) Hyperspectral imaging-based multiple predicting models for functional component contents in Brassica juncea. Agriculture 12:1515. doi:10.3390/agriculture12101515
10.3390/agriculture12101515Donno D, Beccaro GL, Mellan MG, Cerutti AK, Bounous G (2015) Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. J Func Foods 18:1070-1085. doi:10.1016/j.jff.2014.05.020
10.1016/j.jff.2014.05.020Fan S, Li J, Zhang X, Xu D, Liu X, Dias ACP, Zhang X, Chen C (2022) A study on the identification, quantification, and biological activity of compounds from Cornus officinalis before and after in vitro gastrointestinal digestion and simulated colonic fermentation. J Func Foods 98:105272. doi:10.1016/j.jff.2022.105272
10.1016/j.jff.2022.105272Faris H, Habib M, Faris M, Alomari M, Alomari A (2020) Medical speciality classification system based on binary particle swarms and ensemble of one vs. rest support vector machines. J Biomed Inform 109:103525. doi:10.1016/j.jbi.2020.103525
10.1016/j.jbi.2020.10352532781030Feng L, Zhu S, Zhou L, Zhao Y, Bao Y, Zhang C, He Y (2019) Detection of subtle bruises on winter jujube using hyperspectral imaging with pixel-wise deep learning method. IEEE Access 7:64494-64505. doi:10.1109/ACCESS.2019.2917267
10.1109/ACCESS.2019.2917267Fu L, Okamoto H, Kataoka T, Shibata Y (2011) Color based classification for berries of Japanese Blue Honeysuckle. Int J Food Eng 7. doi:10.2202/1556-3758.2408
10.2202/1556-3758.2408Gao X, Liu, Y, An, Ni, J (2021) Active components and pharmacological effects of Cornus officinalis: Literature review. Front Pharmacol 12:633447. doi:10.3389/fphar.2021.633447
10.3389/fphar.2021.63344733912050PMC8072387Gautam RK, Nadda S (2022) Hyperspectral Image Prediction Using Logistic Regression Model. In Proceedings of Emerging Trends and Technologies on Intelligent Systems: ETTIS 2022. Singapore: Springer Nature Singapore, pp 283-293. doi:10.1007/978-981-19-4182-5_22
10.1007/978-981-19-4182-5_22Golpour P, Ghayour-Mobarhan M, Saki A, Esmaily H, Taghipour A, Tajfard M, Ghazizadeh H, Moohebati M, Ferns GA (2020) Comparison of support vector machine, naïve Bayes and logistic regression for assessing the necessity for coronary angiography. Int J Environ Res Public Health 17:6449. doi:10.3390/ijerph17186449
10.3390/ijerph1718644932899733PMC7558963Guzmán CE, Guzman-Moreno CG, Assad-Morell JL, Carrizales-Sepulveda EF (2021) Flecainide toxicity associated with the use of goji berries: A case report. Eur Heart J Case Rep 5:ytab204. doi:10.1093/ehjcr/ytab204
10.1093/ehjcr/ytab20434084998PMC8167332Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43:492-501. doi:10.1109/TGRS.2004.842481
10.1109/TGRS.2004.842481Han S, Williamson BD, Fong Y (2021) Improving random forest predictions in small datasets from two-phase sampling designs. BMC Medical Inform Decis Mak 21:1-9. doi:10.1186/s12911-021-01688-3
10.1186/s12911-021-01688-334809631PMC8607560Handelman GS, Kok HK, Chandra, RV, Razavi AH, Huang S, Brooks M, Lee MJ, Asadi H (2019) Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am J Roentgenol 212:38-43. doi:10.2214/AJR.18.20224
10.2214/AJR.18.2022430332290Hashim H, Abd Lati Z, Adnan NA (2019) Urban vegetation classification with NDVI threshold value method with very high resolution (VHR) Pleiades imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42:237-240. doi:10.5194/isprs-archives-XLII-4-W16-237-2019
10.5194/isprs-archives-XLII-4-W16-237-2019Heydarian M, Doyle TE, Samavi R (2022) MLCM: Multi-label confusion matrix. IEEE Access 10:19083-19095. doi:10.1109/ACCESS.2022.3151048
10.1109/ACCESS.2022.3151048Karimpour-Reihan S, Firuzei E, Khosravi M, Abbaszade M (2018) Coagulation disorder following red clover (Trifolium Pratense) misuse: A case report. Adv J Emerg Med 2:e20. doi:10.22114/ajem.v0i0.30
10.22114/ajem.v0i0.30Karki S, Basak JK, Paudel B, Deb NC, Kim NE, Kook J, Kang MY, Kim HT (2024) Classification of strawberry ripeness stages using machine learning algorithms and colour spaces. Hortic Environ Biotechnol 65:337-354. doi:10.1007/s13580-023-00559-2
10.1007/s13580-023-00559-2Keivani M, Mazloum J, Sedaghatfar E, Tavakoli MB (2020) Automated Analysis of Leaf Shape, Texture, and Color Features for Plant Classification. Trait Du Signal 37:17-28. doi:10.18280/ts.370103
10.18280/ts.370103Kishore M, Kulkarni SB (2016) Approaches and challenges in classification for hyperspectral data: a review. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). IEEE pp 3418-3421. doi:10.1109/ICEEOT.2016.7755339
10.1109/ICEEOT.2016.7755339Kortesoja M, Karhu E, Olafsdottir ES, Freysdottir J, Hanski L (2019) Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radic Biol Med 131:309-317. doi:10.1016/j.freeradbiomed.2018.12.019
10.1016/j.freeradbiomed.2018.12.01930578916Li FS, Weng JK (2017) Demystifying traditional herbal medicine with modern approach. Nat Plants 3:1-7. doi:10.1038/nplants.2017.109
10.1038/nplants.2017.10928758992Li J, Bioucas-Dias JM, Plaza A (2009) Semi-supervised hyperspectral image segmentation. In 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. IEEE pp 1-4. doi:10.1109/WHISPERS.2010.5594877
10.1109/WHISPERS.2010.5594877Li M, Xu H, Deng Y (2019) Evidential decision tree based on belief entropy. Entropy 21:897. doi:10.3390/e21090897
10.3390/e21090897PMC7515420Li Z, He X, Liu F, Wang J, Feng J (2018) A review of polysaccharides from Schisandra chinensis and Schisandra sphenanthera: Properties, functions and applications. Carbohydr Polym 184:178-190. doi:10.1016/j.carbpol.2017.12.058
10.1016/j.carbpol.2017.12.05829352909Liu KH, Yang MH, Huang ST, Lin, C (2022) Plant species classification based on hyperspectral imaging via a lightweight convolutional neural network model. Front Plant Sci 13:855660. doi:10.3389/fpls.2022.855660
10.3389/fpls.2022.85566035498669PMC9044035Llorent-Martínez EJ, Fernandez-de Cordova ML, Ortega-Barrales P, Ruiz-Medina A (2013) Characterization and comparison of the chemical composition of exotic superfoods. Microchem J 110:444-451. doi:10.1016/j.microc.2013.05.016
10.1016/j.microc.2013.05.016Makantasis K, Doulamis AD, Doulamis ND, Nikitakis A (2018) Tensor-based classification models for hyperspectral data analysis. IEEE Trans Geosci Remote Sens 56:6884-6898. doi:10.1109/TGRS.2018.2845450
10.1109/TGRS.2018.2845450Mocan A, Zengin G, Uysal A, Gunes E, Mollica A, Degirmenci NS, Alpsoy L, Aktumsek A (2016) Biological and chemical insights of Morina persica L.: A source of bioactive compounds with multifunctional properties. J Funct Foods 25:94-109. doi:10.1016/j.jff.2016.05.010
10.1016/j.jff.2016.05.010Qian Y, Ye M, Zhou, J (2012) Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens 51:2276-2291. doi:10.1109/TGRS.2012.2209657
10.1109/TGRS.2012.2209657Rajaguru H, S R SC (2019) Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer. Asian Pac J Cancer Prev 20:3777. doi:10.31557/APJCP.2019.20.12.3777
10.31557/APJCP.2019.20.12.377731870121PMC7173366Rajani S, Veena MN (2022) Ayurvedic Plants Identification based on Machine Learning and Deep Learning Technologies. In 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT). IEEE pp 1-6
Rajeshwari T, Vardhini PH, Reddy KMK, Priya KK, Sreeja K (2021) Smart Agriculture Implementation using IoT and Leaf Disease Detection using Logistic Regression. In 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). IEEE pp 619-623. doi:10.1109/RDCAPE52977.2021.9633608
10.1109/RDCAPE52977.2021.9633608Robles-Velasco A, Cortes P, Munuzuri, J, Onieva L (2020) Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliab Eng Syst Saf 196:106754. doi:10.1016/j.ress.2019.106754
10.1016/j.ress.2019.106754Ruett M, Junker-Frohn LV, Siegmann B, Ellenberger J, Jaenicke H, Whitney C, Luedeling E, Tiede-Arlt P, Rascher U (2022) Hyperspectral imaging for high-throughput vitality monitoring in ornamental plant production. Sci Hortic 291:110546. doi:10.1016/j.scienta.2021.110546
10.1016/j.scienta.2021.110546Salman T, Ghubaish A, Unal D, Jain R (2020) Safety score as an evaluation metric for machine learning models of security applications. IEEE Netw Lett 2:207-211. doi:10.1109/LNET.2020.3016583
10.1109/LNET.2020.3016583Salve P, Yannawar P, Sardesai M (2022) Multimodal plant recognition through hybrid feature fusion technique using imaging and non-imaging hyper-spectral data. J King Saud Univ Comput Inf Sci 34:1361-1369. doi:10.1016/j.jksuci.2018.09.018
10.1016/j.jksuci.2018.09.018Sathiyamoorthi V, Harshavardhanan P, Azath H, Senbagavalli M, Viswa Bharathy AM, Chokkalingam BS (2022) An effective model for predicting agricultural crop yield on remote sensing hyper-spectral images using adaptive logistic regression classifier. Concurrency Computat Pract Exper 34:e7242. doi:10.1002/cpe.7242
10.1002/cpe.7242Shabani S, Samadianfard S, Sattari MT, Mosavi A, Shamshirband S, Kmet T, Várkonyi-Koczy AR (2020) Modeling pan evaporation using Gaussian process regression K-nearest neighbors random forest and support vector machines; comparative analysis. Atmosphere 11:66. doi:10.3390/atmos11010066
10.3390/atmos11010066Shah K, Patel H, Sanghvi D, Shah M (2020) A comparative analysis of logistic regression, random forest and KNN models for the text classification. Augment Hum Res 5:1-16. doi:10.1007/s41133-020-00032-0
10.1007/s41133-020-00032-0Sheykhmousa M, Mahdianpari M, Ghanbari H, Mohammadimanesh F, Ghamisi P, Homayouni S (2020) Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J Sel Top Appl Earth Obs Remot Sens 13:6308-6325. doi:10.1109/JSTARS.2020.3026724
10.1109/JSTARS.2020.3026724Skenderidis P, Leontopoulos S, Lampakis D (2022) Goji berry: Health promoting properties. Nutraceuticals 2:32-48. doi:10.3390/nutraceuticals2010003
10.3390/nutraceuticals2010003Speiser JL, Miller ME, Tooze J, Ip E (2019) A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst Appl 134:93-101. doi:10.1016/j.eswa.2019.05.028
10.1016/j.eswa.2019.05.02832968335PMC7508310Teixeira F, Silva AM, Delerue-Matos C, Rodrigues F (2023) Lycium barbarum Berries (Solanaceae) as Source of Bioactive Compounds for Healthy Purposes: A Review. Int J Mol Scie 24:4777. doi:10.3390/ijms24054777
10.3390/ijms2405477736902206PMC10003350Theissler A, Thomas M, Burch M, Gerschner F (2022) ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices. Knowl Based Syst 247:108651. doi:10.1016/j.knosys.2022.108651
10.1016/j.knosys.2022.108651Wang AX, Chukova SS, Nguyen BP (2023) Ensemble k-nearest neighbors based on centroid displacement. Inf Sci 629:313-323. doi:10.1016/j.ins.2023.02.004
10.1016/j.ins.2023.02.004Wang D, Dowell FE, Lacey RE (1999) Single Wheat Kernel Color Classification by Using Near‐Infrared Reflectance Spectra. Cereal Chem 76:30-33. doi:10.1094/CCHEM.1999.76.1.30
10.1094/CCHEM.1999.76.1.30Wong TT, Yeh PY (2019) Reliable accuracy estimates from k-fold cross validation. IEEE Trans Knowl Data Eng 32:1586-1594. doi:10.1109/TKDE.2019.2912815
10.1109/TKDE.2019.2912815Ye W, Yan T, Zhang C, Duan L, Chen W, Song H, Zhang Y, Xu W, Gao P (2022) Detection of Pesticide Residue Level in Grape Using Hyperspectral Imaging with Machine Learning. Foods 11:1609. doi:10.3390/foods11111609
10.3390/foods1111160935681359PMC9180647Zeng L, Liu L, Chen D, Lu H, Xue Y, Bi H, Yang W (2023) The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer. Front Oncol 13:1117420. doi:10.3389/fonc.2023.1117420
10.3389/fonc.2023.111742036959794PMC10029918- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Volume : 42
- No :3
- Pages :249-263
- Received Date : 2023-11-13
- Revised Date : 2023-12-29
- Accepted Date : 2024-08-01
- DOI :https://doi.org/10.7235/HORT.20240022