All Issue

2021 Vol.39, Issue 1 Preview Page

Research Article

28 February 2021. pp. 122-131
Abstract
References
1
Ahmad R, Potter D, Southwick SM (2004) Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. J Am Soc Hortic Sci 129:204-210. doi:10.21273/JASHS.129.2.0204 10.21273/JASHS.129.2.0204
2
Argov S, Ramesh J, Salman A, Sinelnikov I, Goldstein J, Guterman H, Mordechai S (2002) Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. J Biomed Opt 7:248-254. doi:10.1117/1.1463051 10.1117/1.146305111966311
3
Banyay M, Sarkar M, Graslund A (2003) A library of IR bands of nucleic acids in solution. Biophys Chem 104:477-488. doi:10.1016/S0301-4622(03)00035-8 10.1016/S0301-4622(03)00035-8
4
Bouhadida M, Casas AM, Gonzalo MJ, Arús P, Moreno MA, Gogorcena Y (2009) Molecular characterization and genetic diversity of Prunus rootstocks. Sci Hortic 120:237-245. doi:10.1016/j.scienta.2008.11.015 10.1016/j.scienta.2008.11.015
5
Brewer SH, Anthireya SJ, Lappi SE, Drapcho DL, Franzen S (2002) Detection of DNA hybridization on gold surfaces by polarization modulation Infrared Reflection Absorption Spectroscopy. Langmuir 18:4460-4464. doi:10.1021/la0492815 10.1021/la049281515568868
6
Casas AM, Igartua E, Balaguer G, Moreno MA (1999) Genetic diversity of Prunus rootstocks analyzed by RAPD markers. Euphytica 110:139-149. doi:10.1023/A:1003745311408 10.1023/A:1003745311408
7
Cheng Z, Huang H (2009) SSR fingerprinting Chinese peach cultivars and landraces (Prunus persica) and analysis of their genetic relationships. Sci Hortic 120:188-193. doi:10.1016/j.scienta.2008.10.008 10.1016/j.scienta.2008.10.008
8
Cho KH, Nam EY, Bae KM, Shin IS, Kim SH, Kim HR, Chung KH (2012) Analysis of genetic diversity among Wild Peach germplasm using DNA markers. Korean J Breed Sci 44:588-596. doi:10.9787/KJBS.2012.44.4.588 10.9787/KJBS.2012.44.4.588
9
Dukor RK (2002) Vibrational spectroscopy in the detection of cancer. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy 5. Wiley London pp 3335-3361. doi:10.1002/0470027320.s8107 10.1002/0470027320.s810716906494
10
Emura K, Yamanaka S, Isoda H, Watanabe KN (2006) Estimation for different genotypes of plants based on DNA analysis using Near-infrared (NIR) and Fourier-transform Infrared (FT-IR) Spectroscopy. Breed Sci 56:399-403. doi:10.1270/jsbbs.56.399 10.1270/jsbbs.56.399
11
Falk M, Hartman KA, Lord RC (1963) Hydration of deoxyribonucleic acid. III. A spectroscopic study of the effect of hydration on the structure of deoxyribonucleic acid. J Am Chem Soc 85:391-394. doi:10.1021/ja00887a005 10.1021/ja00887a005
12
Fiehn O, Kopka J, Drmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161. doi:10.1038/81137 10.1038/8113711062433
13
Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63-77. doi:10.1016/j.mimet.2005.04.005 10.1016/j.mimet.2005.04.00516229914
14
Gonzalez-Ruiz V, Olives AI, Martin MA, Ribelles P, Ramos MT, Menendez JC (2011) An overview of analytical techniques employed to evidence drug-DNA Interactions. Applications to the Design of Genosensors. In: Biomedical engineering, trends, research and technologies, M. A. Komorowska and S. Olsztynska-Janus (eds.). In Tech pp 65-90. doi:10.5772/13586 10.5772/13586
15
Haji T, Yaegaki H, Yamaguchi M (2001) Changes in ethylene production and flesh firmness of melting, nonmelting and stony hard peaches after harvest. J Jpn Soc Hortic Sci 70:458-458. doi:10.2503/jjshs.70.458 10.2503/jjshs.70.458
16
Han SE, Cho KH, Nam EY, Shin IS, Kim CH, Kim HR, Kim DH (2010) Identification of new breeding lines by Prunus Persica cultivar-specific SCAR primers. Korean J Breed Sci 42:495-501. uci:G704-000329.2010.42.5.009
17
Hong JH, Yi SI, Kwon YS, Kim Y, Choi KJ (2013) Genetic diversity analysis of peach [Prunus persica (L.) Batsch] varieties using SSR markers. Korean J Breed Sci 45:201-211. doi:10.9787/KJBS.2013.45.3.201 10.9787/KJBS.2013.45.3.201
18
Hu D, Zhang Z, Zhang D, Zhang Q, Li J (2005) Genetic relationship of ornamental peach determined using AFLP markers. HortScience 40:1782-1786. doi:10.21273/HORTSCI.40.6.1782 10.21273/HORTSCI.40.6.1782
19
Jun JH, Kwon JH, Nam EY, Chung KH, Yun IK, Yun SK, Kwack YB, Kim SJ, Kang SJ (2013) 'Yumi' peach. HortScience 48:1416-1417. doi:10.21273/HORTSCI.48.11.1416 10.21273/HORTSCI.48.11.1416
20
Kuras A, Antonius K, Kalendar R, Kruczyn'ska D, Korbin M (2013) Application of five DNA marker techniques to distinguish between five apple (Malus x domestica Borkh.) cultivars and their sports. J Hortic Sci Biotechnol 88:790-794. doi:10.1080/14620316.2013.11513040 10.1080/14620316.2013.11513040
21
Kwon JH, Jun JH, Nam EY, Chung KH, Hong SS, Yoon IK, Yun SK, Kwack YB (2015) Profiling diversity and comparison of Eastern and Western cultivars of Prunus persica based on phenotypic traits. Euphytica 206:401-415. doi:10.1007/s10681-015-1494-0 10.1007/s10681-015-1494-0
22
Lee D, Chapman D (1986) Infrared spectroscopic studies of biomembranes and model membranes. Biosci Rep 6:235-256. doi:10.1007/BF01115153 10.1007/BF011151532942193
23
Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286:25435-25442. doi:10.1074/jbc.R111.238691 10.1074/jbc.R111.23869121632543PMC3138266
24
Liquier J, Coffinier P, Firon M, Taillandier E (1991) Triple helical polynucleotidic structures: sugar conformations determined by FTIR spectroscopy. J Biomol Struct Dyn 9:437-445. doi:10.1080/07391102.1991.10507927 10.1080/07391102.1991.105079271815637
25
Liu Y, Ying Y, Yu H, Fu X (2006) Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. J Agric Food Chem 54:2810-2815. doi:10.1021/jf052889e 10.1021/jf052889e16608193
26
Malins DC, Gilman NK, Green VM, Wheeler TM, Barker EA, Anderson KM (2005) A cancer DNA phenotype in healthy prostates, conserved in tumors and adjacent normal cells, implies a relationship to carcinogenesis. Proc Natl Acad Sci 102:19093-19096. doi:10.1073/pnas.0509630102 10.1073/pnas.050963010216361440PMC1323211
27
Malins DC, Johnson PM, Barker EA, Polissar NL, Wheeler TM, Anderson KM (2003) Cancer-related changes in prostate DNA as men age and early identification of metastasis in primary prostate tumors. Proc. Natl Acad Sci 100:5401-5406. doi:10.1073/pnas.0931396100 10.1073/pnas.093139610012702759PMC154357
28
Malins DC, Polissar NL, Gunselman SJ (1997) Models of DNA structure achieve almost perfect discrimination between normal prostate, benign prostatic hyperplasia (BPH), and adenocarcinoma and have a high potential for predicting BPH and prostate cancer. Proc Natl Acad Sci 94:259-264. doi:10.1073/pnas.94.1.259 10.1073/pnas.94.1.2598990196PMC19308
29
Mello MLS, Vidal BC (2012) Changes in the infrared microspectroscopic characteristics of DNA caused by cationic elements, different base richness and single-Stranded form. PLoS ONE 7:e43169. doi:10.1371/journal.pone.0043169 10.1371/journal.pone.004316922937023PMC3427352
30
Mungur R, Glass ADM, Goodenow DB, Lightfoot DA (2005) Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J Biomed Biotechnol 2005:198-214. doi:10.1155/JBB.2005.198 10.1155/JBB.2005.19816046826PMC1184043
31
Muntean CM, Halmagyi A, Puia MD, Pavel I (2009) FT-Raman of genomic DNA from plant tissues. Spectroscopy 23:59-70. doi:10.3233/SPE-2009-0375 10.1155/2009/131859
32
Naumann A, Navarro-Gonzalez M, Peddireddi S, Kues U, Polle A (2005) Fourier transform infrared microscopy and imaging: detection of fungi in wood. Fungal Genet Biol 42:829-835. doi:10.1016/j.fgb.2005.06.003 10.1016/j.fgb.2005.06.00316098775
33
Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81-82. doi:10.1038/351081a0 10.1038/351081a01902911
34
Ngo-Thi NA, Kirschner C, Naumann D (2003) Characterization and identification of microorganisms by FT-IR microspectrometry. J Mol Struct 661-662:371-380. doi:10.1016/j.molstruc.2003.08.012 10.1016/j.molstruc.2003.08.012
35
Pan L, Zeng W, Niu L, Lu Z, Liu H, Gui G, Zhu Y, Chu J, Li W, et al. (2015) PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. J Exp Bot 66:7031-7044. doi:10.1093/jxb/erv400 10.1093/jxb/erv40026307136PMC4765781
36
Preisner O, Lopes JA, Guiomar R, MacHado J, Menezes JC (2007) Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination. Anal Bioanal Chem 387:1739-1748. doi:10.1007/s00216-006-0851-1 10.1007/s00216-006-0851-117086390
37
Sahu RK, Mordechai S, Manor E (2008) Nucleic acids absorbance in mid IR and its effect on diagnostic variates during cell division: a case study with lymphoblastic cells. Biopolymers 89:993-1001. doi:10.1002/bip.21048 10.1002/bip.2104818615660
38
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
39
Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13-25. doi:10.1016/j.vibspec.2006.06.001 10.1016/j.vibspec.2006.06.001
40
Song SY, Jie EY, Ahn MS, Lee IH, Nou IS, Min BW, Kim SW (2014) Fourier transform infrared (FT-IR) spectroscopy of genomic DNA to discriminate F1 progenies from their paternal lineage of Chinese cabbage (Brassica rapa subsp. pekinensis). Mol Breed 33:453-464. doi:10.1007/s11032-013-9963-4 10.1007/s11032-013-9963-4
41
Song SY, Kim CH, Joung YB, Lim CK, Seong KC, Song KJ, Moon DG (2017) Genomic DNA data of FT-IR spectroscopy using discriminate from different species in tea trees. J Korean Tea Soc 23:45-51. doi:10.29225/jkts.2017.23.1.45 10.29225/jkts.2017.23.1.45
42
Song SY, Nam EY, Yun SK, Kim SJ, Kwon JH (2020) Multivariate analysis of wild peach accessions for rootstock breeding using FT-IR spectroscopy of genomic DNA data. Korean J Breed Sci 52:25-31. doi:10.9787/KJBS.2020.52.1.25 10.9787/KJBS.2020.52.1.25
43
Sundaram J, Park B, Hinton A, Yoon SC, Lawrence KC (2012) Identification and characterization of Salmonella serotypes using DNA spectral characteristics by Fourier transform infrared (FT-IR) spectroscopy. Proc SPIE pp 8369. doi:10.1117/12.918585 10.1117/12.918585
44
Terhoeven-Urselmans T, Vagen TG, Spaargaren O, Shepherd KD (2010) Prediction of soil fertility properties from a globally distributed soil mid-infrared spectral library. Soil Sci Soc Am J 74:1792-1799. doi:10.2136/sssaj2009.0218 10.2136/sssaj2009.0218
45
Trygg J, Holmes E, Londstedt T (2007) Chemometrics in metabonomics. J Proteomes Res 6:467-479. doi:10.1021/pr060594q 10.1021/pr060594q17269704
46
Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori1 MT, Grimwood J, et al. (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487-496. doi:10.1038/ng.2586 10.1038/ng.258623525075
47
Warburton ML, Bliss FA (1996) Genetic diversity in peach (Prunus persica L. Batch) revealed by randomly amplified polymorphic DNA (RAPD) markers and compared to inbreeding coefficients. J Am Soc Hortic Sci 121:1012-1019. doi:10.21273/JASHS.121.6.1012 10.21273/JASHS.121.6.1012
48
Wold H (1966) Estimation of principal components and related models by iterative least squares, pp 391-420. In: K. R. Krishnaiah (ed.). Multivariate Analysis. Academic Press, New York.
49
Xie R, Li X, Chai M, Song L, Jia H, Wu D, Chen M, Chen K, Aranaza MJ, et al. (2010) Evaluation of the genetic diversity of Asia peach accessions using a selected set of SSR markers. Sci Hortic 125:622-629. doi:10.1016/j.scienta.2010.05.015 10.1016/j.scienta.2010.05.015
50
Xu DH, Wahyuni S, Sato Y, Yamaguchi M, Tsunematsu H, Ban T (2006) Genetic diversity and genetic relationships of Japanese peach (Prunus persica L.) cultivars reveales by AFLP and pedigree tracing. Genet. Resour. Crop Evol 53:883-889. doi:10.1007/s10722-004-0575-z 10.1007/s10722-004-0575-z
51
Yamamoto T, Mochida K, Hayashi T (2003) Shanhai Suimitsuto, one of the origins of Japanese peach cultivars. J Jpn Soc Hortic Sci 72:116-121. doi:10.2503/jjshs.72.116 10.2503/jjshs.72.116
52
Yesudas CR, Bashir R, Geisler MB, Lightfoot DA (2013) Identification of germplasm with stacked QTL underlying seed traits in an inbred soybean population from cultivars Essex and Forrest. Mol Breed 31:693-703. doi:10.1007/s11032-012-9827-3 10.1007/s11032-012-9827-3
53
Yoon JH, Liu DC, Song WS, Liu WS, Zhang AM, Li SH (2006) Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on simple sequence repeat (SSR) markers. J Am Soc Hortic Sci 131:513-521. doi:10.21273/JASHS.131.4.513 10.21273/JASHS.131.4.513
54
Zhou-Sun B, Sun J, Gryaznov SM, Liquier J, Garestier T, Helene C, Taillandier E (1997) A physico-chemical study of triple helix formation by an oligodeoxythymidylate with N34'-P5' phosphoramidate linkages. Nucleic Acids Res 25:1782-1787. doi:10.1093/nar/25.9.1782 10.1093/nar/25.9.17829108161PMC146641
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :1
  • Pages :122-131
  • Received Date : 2020-07-01
  • Revised Date : 2020-09-18
  • Accepted Date : 2020-11-06