All Issue

2025 Vol.43, Issue 5 Preview Page

Research Article

31 October 2025. pp. 660-672
Abstract
References
1

Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89:1485-1493. https://doi.org/10.1007/s11746-012-2032-z

10.1007/s11746-012-2032-z
2

Britto SD, Joshi SM, Jogaiah S (2021) Trehalose: A mycogenic cell wall elicitor elicit resistance against leaf spot disease of broccoli and acts as a plant growth regulator. Biotechnol Rep 32:e00690. https://doi.org/10.1016/j.btre.2021.e00690

10.1016/j.btre.2021.e0069034987982PMC8711064
3

Choi HG, Moon BY, Kang NJ (2016) Correlation between strawberry (Fragaria ananassa, Duch.) productivity and photosynthesis-related parameters under various growth conditions. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01607

10.3389/fpls.2016.01607
4

Choi JH (2023) Agricultural area survey in 2023. In. Statistics Korea

5

Choi SH, Choi K, Jeong HJ, Kim SH, Lee SC, Choi HG (2017) Optimum nutrient concentration to improve growth and quality of strawberry cultivars 'Berrystar' and 'Jukhyang' in Hydroponics. J Bio-Env Con 26:424-431. https://doi.org/10.12791/KSBEC.2017.26.4.424

10.12791/KSBEC.2017.26.4.424
6

Fernandez O, Bethencourt L, Quero A, Sangwan RS, Clement C (2010) Trehalose and plant stress responses: friend or foe?. Trends Plant Sci 15:409-417. https://doi.org/10.1016/j.tplants.2010.04.004

10.1016/j.tplants.2010.04.00420494608
7

Govind SR, Jogaiah S, Abdelrahman M, Shetty HS, Tran LS (2016) Exogenous trehalose treatment enhances the activities of defense-related enzymes and triggers resistance against downy mildew disease of pearl millet. Front Plant Sci 7:1593. https://doi.org/10.3389/fpls.2016.01593

10.3389/fpls.2016.0159327895647PMC5109038
8

Hu Y, Han YT, Wei W, Li YJ, Zhang K, Gao YR, Zhao FL, Feng JY (2015) Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Front Plant Sci 6:736. https://doi.org/10.3389/fpls.2015.00736

10.3389/fpls.2015.00736
9

Kadir S, Sidhu G, Al-Khatib K (2006) Strawberry (Fragaria ×ananassa Duch.) growth and productivity as affected by temperature. HortScience 41:1423-1430. https://doi.org/10.21273/HORTSCI.41.6.1423

10.21273/HORTSCI.41.6.1423
10

Kandler O, Hopf H (1980) 7 - Occurrence, metabolism, and function of oligosaccharides. Elsevier 221-270. https://doi.org/10.1016/B978-0-12-675403-2.50013-2

10.1016/B978-0-12-675403-2.50013-2
11

Kang SB, Lee IB, Park JM, Lim TJ (2010) Effect of waterlogging conditions on the growth, root activities and nutrient content of 'Campbell Early' grapevine. Hortic Sci Technol 28:172-179

12

Kitajima M, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim Biophys Acta Bioenerg 376:105-115. https://doi.org/10.1016/0005-2728(75)90209-1

10.1016/0005-2728(75)90209-1
13

Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019) Trehalose: A key organic osmolyte effectively involved in plant abiotic stress tolerance. J Plant Growth Regul 38:606-618. https://doi.org/10.1007/s00344-018-9876-x

10.1007/s00344-018-9876-x
14

Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593-1608. https://doi.org/10.1093/jxb/err460

10.1093/jxb/err46022291134PMC4359903
15

Lee GB, Choe YU, Park YH, Choi YW, Kang JS (2018) Effects of groundwater cooling treatment on growth, yield, and quality of strawberries under high temperature conditions. J Environ Sci Int 27:631-639. https://doi.org/10.5322/JESI.2018.27.8.631

10.5322/JESI.2018.27.8.631
16

Lee JN, Kim HJ, Kim KD, Kwen KB, Suh JT (2017) Characteristics of New Ever-bearing Strawberry 'Jangha' Bred for High Soluble Solids Contents. Korean J Hortic Sci Technol 35:381-386. https://doi.org/10.12972/kjhst.20170040

10.12972/kjhst.20170040
17

Lee JN, Kim HJ, Kim KD, Yoo DL, Suh JT (2014) Characteristics of the new ever-bearing strawberry 'Yeolha' for high yield. Hortic Sci Technol 32:739-743. https://doi.org/10.7235/hort.2014.14069

10.7235/hort.2014.14069
18

Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry 1:F4.3.1-F4.3.8. https://doi.org/10.1002/0471142913.faf0403s01

10.1002/0471142913.faf0403s01
19

Liu TA, Lin JJ, Wu RY (2006) The effects of using trehalose as a carbon source on the proliferation of Phalaenopsis and Doritaenopsis protocorm-like-bodies. Plant Cell Tissue Organ Cult 86:125-129. https://doi.org/10.1007/s11240-006-9092-4

10.1007/s11240-006-9092-4
20

Lu XY, Xu H, Song W, Yang ZT, Yu J, Tian YE, Jiang M, Shen DY, Dou DL (2021) Rapid and simple detection of in strawberry using a coupled recombinase polymerase amplification-lateral flow strip assay. Phytopathol Res 3. https://doi.org/10.1186/s42483-021-00089-8

10.1186/s42483-021-00089-834127941PMC8189726
21

Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014) Trehalose metabolism in plants. Plant J 79:544-567. https://doi.org/10.1111/tpj.12509

10.1111/tpj.1250924645920
22

Luo Y, Wang W, Fan YZ, Gao YM, Wang D (2018) Exogenously-supplied trehalose provides better protection for d1 protein in winter wheat under heat stress. Russ J Plant Physiol 65:115-122. https://doi.org/10.1134/S1021443718010168

10.1134/S1021443718010168
23

Luo Y, Wang Y, Xie YY, Gao YM, Li WQ, Lang SP (2022) Transcriptomic and metabolomic analyses of the effects of exogenous trehalose on heat tolerance in wheat. Int J Mol Sci 23. https://doi.org/10.3390/ijms23095194

10.3390/ijms2309519435563585PMC9103215
24

Luo Y, Xie Y, He D, Wang W, Yuan S (2021) Exogenous trehalose protects photosystem II by promoting cyclic electron flow under heat and drought stresses in winter wheat. Plant Biol (Stuttg) 23:770-776. https://doi.org/10.1111/plb.13277

10.1111/plb.1327733914400
25

MacIntyre AM, Meline V, Gorman Z, Augustine SP, Dye CJ, Hamilton CD, Iyer-Pascuzzi AS, Kolomiets MV, McCulloh KA, et al. (2022) Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLoS One 17. https://doi.org/10.1371/journal.pone.0266254

10.1371/journal.pone.026625435476629PMC9045674
26

Mori IC, Matsuura T, Otao M, Ooi L, Nishimura Y, Hirayama T (2023) Application of trehalose mitigates short-styled flowers in solanaceous crops. J Agric Food Chem 71:5476-5482. https://doi.org/10.1021/acs.jafc.2c08479

10.1021/acs.jafc.2c0847937011406PMC10103160
27

Na YW, Jeong H, Lee SY, Choi HG, Kim SH, Rho IR (2014) Chlorophyll fluorescence as a diagnostic tool for abiotic stress tolerance in wild and cultivated strawberry species. Hortic Environ Biotechnol 55:280-286. https://doi.org/10.1007/s13580-014-0006-9

10.1007/s13580-014-0006-9
28

Nam MH, Kim HS, Kim TI, Lee EM (2015) Comparison of environmental-friendly and chemical spray calendar for controlling diseases and insect pests of strawberry during nursery seasons. Res Plant Dis 21:273-279. https://doi.org/10.5423/RPD.2015.21.4.273

10.5423/RPD.2015.21.4.273
29

Nam MH, Kim HS, Park MS, Min JY, Kim HT (2020) Genetic diversity, pathogenicity, and fungicide response of Fusarium oxysporum f. sp. fragariae isolated from strawberry plants in Korea. Res Plant Dis 26:79-87. https://doi.org/10.5423/RPD.2020.26.2.79

10.5423/RPD.2020.26.2.79
30

Ohtake S, Wang YJ (2011) Trehalose: current use and future applications. J Pharm Sci 100:2020-2053. https://doi.org/10.1002/jps.22458

10.1002/jps.2245821337544
31

Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417-441. https://doi.org/10.1146/annurev.arplant.59.032607.092945

10.1146/annurev.arplant.59.032607.09294518257709
32

Paul S, Paul S (2014) Trehalose induced modifications in the solvation pattern of N-Methylacetamide. J Phys Chem B 118:1052-1063. https://doi.org/10.1021/jp407782x

10.1021/jp407782x24423002
33

Reignault PH, Cogan A, Muchembled J, Lounes-Hadj Sahraoui A, Durand R, Sancholle M (2001) Trehalose induces resistance to powdery mildew in wheat. New Phytol 149:519-529. https://doi.org/10.1046/j.1469-8137.2001.00035.x

10.1046/j.1469-8137.2001.00035.x33873340
34

Ruan J, Lee YH, Hong SJ, Yeoung YR (2013) Sugar and organic acid contents of day-neutral and ever-bearing strawberry cultivars in high-elevation for summer and autumn fruit production in Korea. Hortic Environ Biotechnol 54:214-222. https://doi.org/10.1007/s13580-013-0186-8

10.1007/s13580-013-0186-8
35

Ryou Y, Kang Y, Kim Y, Kang K (2008) Heating and cooling effect of portected horticulture by geothermal heat pump system with horizontal heat exchanger. In forum on renewable energy, Vol 2008.05a. Korean Society for New and Renewable Energy, pp 630-633

36

Samadi S, Habibi G, Vaziri A (2019) Exogenous trehalose alleviates the inhibitory effects of salt stress in strawberry plants. Acta Physiol Plant 41. https://doi.org/10.1007/s11738-019-2905-y

10.1007/s11738-019-2905-y
37

Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879-890. https://doi.org/10.1104/pp.104.039503

10.1104/pp.104.03950315181209PMC514123
38

Singh V, Louis J, Ayre BG, Reese JC, Pegadaraju V, Shah J (2011) TREHALOSE PHOSPHATE SYNTHASE11-dependent trehalose metabolism promotes Arabidopsis thaliana defense against the phloem-feeding insect Myzus persicae. Plant J 67:94-104. https://doi.org/10.1111/j.1365-313X.2011.04583.x

10.1111/j.1365-313X.2011.04583.x21426427
39

Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: An overview. Environ Exp Bot 61:199-223. https://doi.org/10.1016/j.envexpbot.2007.05.011

10.1016/j.envexpbot.2007.05.011
40

Yoo JH, Park MS, Yi DH, Nam MH (2024) First report of anthracnose caused by colletotrichum nymphaeae on strawberry fruits in Korea. Kor J Mycol 52:109-114

41

Zhao DQ, Li TT, Hao ZJ, Cheng ML, Tao J (2019) Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperones 24:247-257. https://doi.org/10.1007/s12192-018-00961-1

10.1007/s12192-018-00961-130632065PMC6363623
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 43
  • No :5
  • Pages :660-672
  • Received Date : 2024-07-30
  • Revised Date : 2024-12-03
  • Accepted Date : 2024-12-31