Research Article
Aranganayagi S, Thangavel K (2007) Clustering categorical data using silhouette coefficient as a relocating measure. Paper presented at the International conference on computational intelligence and multimedia applications (ICCIMA 2007). https://doi.org/10.1109/ICCIMA.2007.328
10.1109/ICCIMA.2007.328Baek Y, Sul S, Cho YY (2023) Estimation of days after transplanting using an artificial intelligence CNN (convolutional neural network) model in a closed-type plant factory. Hortic Sci Technol 41:81-90. https://doi.org/10.7235/HORT.20230008
10.7235/HORT.20230008Boldt JK, Meyer MH, Erwin JE (2014) Foliar anthocyanins: A horticultural review. Hortic Rev 42:209-252. https://doi.org/10.1002/9781118916827.ch04
10.1002/9781118916827.ch04Boykov YY, Jolly MP (2001) Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In: Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 105-112. https://doi.org/10.1109/ICCV.2001.937505
10.1109/ICCV.2001.937505Buxbaum N, Lieth JH, Earles JM (2022) Non-destructive plant biomass monitoring with high spatio-temporal resolution via proximal RGB-d imagery and end-to-end deep learning. Front Plant Sci 13:758818. https://doi.org/10.3389/fpls.2022.758818
10.3389/fpls.2022.75881835498682PMC9043900Cavallo DP, Cefola M, Pace B, Logrieco AF, Attolico G (2017) Contactless and non-destructive chlorophyll content prediction by random forest regression: A case study on fresh-cut rocket leaves. Comput Electron Agric 140:303-310. https://doi.org/10.1016/j.compag.2017.06.012
10.1016/j.compag.2017.06.012Choi SY, Lee AK (2020) Development of a cut rose longevity prediction model using thermography and machine learning. Hortic Sci Technol 38:675-685. https://doi.org/10.7235/HORT.20200061
10.7235/HORT.20200061Chowdhury M, Ngo VD, Islam MN, Ali M, Islam S, Rasool K, Park SU, Chung SO (2021) Estimation of glucosinolates and anthocyanins in kale leaves grown in a plant factory using spectral reflectance. Horticulturae 7:56. https://doi.org/10.3390/horticulturae7030056
10.3390/horticulturae7030056Del Valle JC, Gallardo-López A, Buide ML, Whittall JB, Narbona E (2018) Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues. Ecol Evol 8:3064-3076. https://doi.org/10.1002/ece3.3804
10.1002/ece3.380429607006PMC5869271Gehan MA, Fahlgren N, Abbasi A, Berry J, Callen ST, Chavez L, Doust AN, Feldman M, Gilbert KB, et al. (2017) PlantCV v2: Image analysis software for high-throughput plant phenotyping. Peer J 5. https://doi.org/10.7717/peerj.4088
10.7717/peerj.408829209576PMC5713628He R, Zhang Y, Song S, Su W, Hao Y, Liu H (2021) UV-A and FR irradiation improves growth and nutritional properties of lettuce grown in an artificial light plant factory. Food Chem 345:128727. https://doi.org/10.1016/j.foodchem.2020.128727
10.1016/j.foodchem.2020.12872733307433Heo JW, Baek JH (2021) Effects of light-quality control on the plant growth in a plant factory system of artificial light type. Korean J Environ Agric 40:270-278. https://doi.org/10.5338/KJEA.2021.40.4.31
10.5338/KJEA.2021.40.4.31Hwang IC, Noh HS, Yang DI, Kim MB (2021) Prediction of Paprika yield using multiple linear regression. JKICS 46:2048-2055. https://doi.org/10.7840/kics.2021.46.11.2048
10.7840/kics.2021.46.11.2048Kanchanomai C, Ohashi S, Naphrom D, Nemoto W, Maniwara P, Nakano K (2020) Non-destructive analysis of Japanese table grape qualities using near-infrared spectroscopy. Hortic Environ Biotechnol 61:725-733. https://doi.org/10.1007/s13580-020-00256-4
10.1007/s13580-020-00256-4Karki S, Basak JK, Paudel B, Deb NC, Kim NE, Kook J, Kang MY, Kim HT (2024) Classification of strawberry ripeness stages using machine learning algorithms and colour spaces. Hortic Environ Biotechnol 65:337-354. https://doi.org/10.1007/s13580-023-00559-2
10.1007/s13580-023-00559-2Mochida K, Koda S, Inoue K, Hirayama T, Tanaka Y, Nishii T, Melgani F (2019) Computer vision-based phenotyping for improvement of plant productivity: A machine learning perspective. Gigascience 8. https://doi.org/10.1093/gigascience/giy153
10.1093/gigascience/giy15330520975PMC6312910Mogol BA, Gökmen V (2014) Computer vision-based analysis of foods: A non-destructive colour measurement tool to monitor quality and safety. J Sci Food Agric 94:1259-1263. https://doi.org/10.1002/jsfa.6500
10.1002/jsfa.650024288215Mustaffa IB, Khairul SF (2017) Identification of fruit size and maturity through fruit images using OpenCV-Python and Rasberry Pi. Paper presented at the 2017 International Conference on Robotics, Automation and Sciences (ICORAS). https://doi.org/10.1109/ICORAS.2017.8308068
10.1109/ICORAS.2017.830806828536344PMC5423489Pulli K, Baksheev A, Kornyakov V, Eruhimov V (2012) Real-time computer vision with OpenCV. Commun ACM 55:61-69. https://doi.org/10.1145/2184319.2184337
10.1145/2184319.2184337Rehman TU, Mahmud MS, Chang YK, Jin J, Shin J (2019) Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Comput Electron Agric 156:585-605. https://doi.org/10.1016/j.compag.2018.12.006
10.1016/j.compag.2018.12.006Shahapure KR, Nicholas C (2020) Cluster quality analysis using silhouette score. Paper presented at the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). https://doi.org/10.1109/DSAA49011.2020.00096
10.1109/DSAA49011.2020.00096Shao M, Liu W, Zha L, Zhou C, Zhang Y, Li B (2020) Differential effects of high light duration on growth, nutritional quality, and oxidative stress of hydroponic lettuce under red and blue LED irradiation. Sci Hortic 268:109366. https://doi.org/10.1016/j.scienta.2020.109366
10.1016/j.scienta.2020.109366Simko I, Hayes RJ, Furbank RT (2016) Non-destructive phenotyping of lettuce plants in early stages of development with optical sensors. Front Plant Sci 7:1985. https://doi.org/10.3389/fpls.2016.01985
10.3389/fpls.2016.0198528083011PMC5187177Sinaga KP, Yang MS (2020) Unsupervised K-means clustering algorithm. IEEE Access 8:80716-80727. https://doi.org/10.1109/ACCESS.2020.2988796
10.1109/ACCESS.2020.2988796Steidle Neto AJ, Moura LO, Lopes DC, Carlos LA, Martins LM, Ferraz LCL (2017) Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy. J Sci Food Agric 97:2015-2022. https://doi.org/10.1002/jsfa.8002
10.1002/jsfa.800227553517Tan WH, Ibrahim H, Chan DJC (2021) Estimation of mass, chlorophylls, and anthocyanins of Spirodela polyrhiza with smartphone acquired images. Comput Electron Agric 190:106449. https://doi.org/10.1016/j.compag.2021.106449
10.1016/j.compag.2021.106449Thomas S, Kuska MT, Bohnenkamp D, Brugger A, Alisaac E, Wahabzada M, Behmann J, Mahlein AK (2018) Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J Plant Dis Prot 125:5-20. https://doi.org/10.1007/s41348-017-0124-6
10.1007/s41348-017-0124-6Tian K, Li J, Zeng J, Evans A, Zhang L (2019) Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm. Comput Electron Agric 165:104962. https://doi.org/10.1016/j.compag.2019.104962
10.1016/j.compag.2019.104962Wang YM, Li Y, Zheng JB (2010) A camera calibration technique based on OpenCV. Paper presented at the The 3rd International Conference on Information Sciences and Interaction Sciences. https://doi.org/10.1109/ICICIS.2010.5534797
10.1109/ICICIS.2010.5534797Xue L, Yang L (2009) Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS J Photogramm Remote Sens 64:97-106. https://doi.org/10.1016/j.isprsjprs.2008.06.002
10.1016/j.isprsjprs.2008.06.002- Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
- Publisher(Ko) :한국원예학회
- Journal Title :Horticultural Science and Technology
- Journal Title(Ko) :원예과학기술지
- Received Date : 2023-09-20
- Revised Date : 2024-03-20
- Accepted Date : 2024-03-21
- DOI :https://doi.org/10.7235/HORT.20250005