All Issue

2020 Vol.38, Issue 6 Preview Page

Research Article

31 December 2020. pp. 840-849
Adak N, Gubbuk H, Tetik N (2018) Yield, quality and biochemical properties of various strawberry cultivars under water stress. J Sci Food Agric 98:304-311. doi:10.1002/jsfa.8471 10.1002/jsfa.847128585314
Al-Gaadi KA, Hassaballa AA, Tola EK, Kayad AG, Madugundu R, Alblewi B, Assiri F (2016) Prediction of potato crop yield using precision agriculture techniques. PLoS ONE 11:1-16. doi:10.1371/journal.pone.0162219 10.1371/journal.pone.016221927611577PMC5017787
Bartczak M, Lisiecka J, Knaflewski M (2010) Correlation between selected parameters of planting material and strawberry yield. Folia Hortic 22:9-12. doi:10.2478/fhort-2013-0144 10.2478/fhort-2013-0144
Bugg AL, Landsberg J, Laughlin G, Tickle P, Frakes I (2006) Application of three modelling approaches to simulating tree growth in central NSW, Australia. Environ Modelling Software 21:310-319. doi:10.1016/j.envsoft.2004.11.002 10.1016/j.envsoft.2004.11.002
Chisholm TJ, Chapman DS (1992) Climate change inferred from analysis of borehole temperatures: an example from western Utah. J Geophys Res Solid Earth 97:14,155-14,175. doi:10.1029/92JB00765 10.1029/92JB00765
Choi K, Lee G, Han YJ, Bunn JM (1995) Tomato maturity evaluation using color image analysis. Trans ASAE 38:171-176. doi:10.13031/2013.27827 10.13031/2013.27827
Døving A (1987) Klimaverknader på jordbær. Gartneryrket 23:550-551
Døving A, Måge F (2001) Prediction of strawberry fruit yield. Acta Agric Scand Section B Plant Soil Sci 51:35-42. doi:10.1080/090647101317187870 10.1080/090647101317187870
Fernandez GE, Butler LM, Louws FJ (2001) Strawberry growth and development in an annual plasticulture system. HortScience 36:1219-1223. doi:10.21273/HORTSCI.36.7.1219 10.21273/HORTSCI.36.7.1219
Gholipoor M, Nadali F (2019) Fruit yield prediction of pepper using artificial neural network. Sci Hortic 250:249-253. doi:10.1016/j.scienta.2019.02.040 10.1016/j.scienta.2019.02.040
Givnish TJ, Vermeij GJ (1976) Sizes and shapes of liana leaves. Am Nat 110:743-776. doi:10.1086/283101 10.1086/283101
Güçlü SF, Öncü Z, Koyuncu F (2020) Pollen performance modelling with an artificial neural network on commercial stone fruit cultivars. Hortic Environ Biotechnol 61:61-67 doi:10.1007/s13580-019-00208-7 10.1007/s13580-019-00208-7
Hidaka K, Dan K, Imamura H, Miyoshi Y, Takayama T, Sameshima K, Kitano M, Okimura M (2013) Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environ Control Biol 51:41-47. doi:10.2525/ecb.51.41 10.2525/ecb.51.41
Human JP (1999) Effect of number of plants per plant hole and of runner plant crown diameter on strawberry yield and fruit mass. S Afr J Plant Soil 16:189-191. doi:10.1080/02571862.1999.10635009 10.1080/02571862.1999.10635009
Jun H, Jung H, Imai K (2017) Gas exchange characteristics of a leading cultivar of Korean strawberry (Fragaria×ananassa, 'Sulhyang'). Sci Hortic 221:10-15. doi:10.1016/j.scienta.2017.04.009 10.1016/j.scienta.2017.04.009
Jun HJ, Hwang JG, Son MJ, Choi DJ (2008) Effect of root zone temperature on root and shoot growth of strawberry. J Bio-Environ Control 17:14-19
Jurik TW, Chabot JF, Chabot BF (1982) Effects of light and nutrients on leaf size, CO2 exchange, and anatomy in wild strawberry (Fragaria virginiana). Plant Physiol 70:1044-1048. doi:10.1104/pp.70.4.1044 10.1104/pp.70.4.104416662610PMC1065822
Karydas C, Iatrou M, Kouretas D, Patouna A, Iatrou G, Lazos N, Gewehr S, Tseni X, Tekos F, et al. (2020) Prediction of antioxidant activity of cherry fruits from UAS multispectral imagery using machine learning. Antioxidants 9:1-25. doi:10.3390/antiox9020156 10.3390/antiox902015632075036PMC7070805
Keutgen N, Chen K, Lenz F (1997) Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J Plant Physiol 150:395-400. doi:10.1016/S0176-1617(97)80088-0 10.1016/S0176-1617(97)80088-0
Kim DS, Lee DU, Choi JH, Kim S, Lim JH (2019) Prediction of carotenoid content in tomato fruit using a fluorescence screening method. Postharvest Biol Technol 156:1-7. doi:10.1016/j.postharvbio.2019.05.018 10.1016/j.postharvbio.2019.05.018
Kogan F, Guo W, Strashnaia A, Kleshenko A, Chub O, Virchenko O (2016) Modelling and prediction of crop losses from NOAA polar-orbiting operational satellites. Geomat Nat Haz Risk 7:886-900. doi:10.1080/19475705.2015.1009178 10.1080/19475705.2015.1009178
Ljones B (1978) Klimaverknader på jordbærplanter dyrka påfriland. Meld NLH 57:1-15
Mahajan G, Singh KG (2006) Response of greenhouse tomato to irrigation and fertigation. Agric Water Manag 84:202-206. doi:10.1016/j.agwat.2006.03.003 10.1016/j.agwat.2006.03.003
Moon TW, Jung DH, Chang SH, Son JE (2018) Estimation of greenhouse CO2 concentration via an artificial neural network that uses environmental factors. Hortic Environ Biotechnol 59:45-50. doi:10.1007/s13580-018-0015-1 10.1007/s13580-018-0015-1
Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P (2019) IoT and agriculture data analysis for smart farm. Comput Electron Agric 156:467-474. doi:10.1016/j.compag.2018.12.011 10.1016/j.compag.2018.12.011
Nederhoff EM, Rijsdijk AA, de Graaf R (1992) Leaf conductance and rate of crop transpiration of greenhouse grown sweet pepper (Capsicum annuum L.) as affected by carbon dioxide. Sci Hortic 52:283-301. doi:10.1016/0304-4238(92)90030-G 10.1016/0304-4238(92)90030-G
Odongo T, Isutsa DK, Aguyoh JN (2008) Effects of integrated nutrient sources on growth and yield of strawberry grown under tropical high-altitude conditions. Afr J Hortic Sci 1:53-69
Park SW, Kwack Y, Chun C (2018) Growth and propagation rate of strawberry transplants produced in a plant factory with artificial lighting as affected by separation time from stock plants. Hortic Environ Biotechnol 59:199-204 doi:10.1007/s13580-018-0027-x 10.1007/s13580-018-0027-x
Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505-537. doi:10.2307/2258359 10.2307/2258359
Qian T, Dieleman JA, Elings A, Marcelis LFM (2012) Leaf photosynthetic and morphological responses to elevated CO2 concentration and altered fruit number in the semi-closed greenhouse. Sci Hortic 145:1-9. doi:10.1016/j.scienta.2012.07.015 10.1016/j.scienta.2012.07.015
Rudolph V (1985) Möglichkeiten zur Verbesserung der Jahresertragsvoraussage bei Erdbeere durch Berücksichtigung ertragsbeeinflussender Witterungsfaktoren am Beispiel der Sorte "Senga Sengana''. Arch Gartenb 33:233-42
Sønsteby A, Solhaug KA, Heide OM (2016) Functional growth analysis of 'Sonata' strawberry plants grown under controlled temperature and daylength conditions. Sci Hortic 211:36-33. doi:10.1016/j.scienta.2016.08.003 10.1016/j.scienta.2016.08.003
Sun P, Mantri N, Lou H, Hu Y, Sun D, Zhu Y, Dong T, Lu H (2012) Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria × ananassa Duch.) at two levels of nitrogen application. PLoS ONE 7:1-12. doi:10.1371/journal.pone.0041000 10.1371/journal.pone.004100022911728PMC3404062
Tartachnyk II, Blanke MM (2007) Photosynthesis and transpiration of tomato and CO2 fluxes in a greenhouse under changing environmental conditions in winter. Ann Appl Biol 150:149-156. doi:10.1111/j.1744-7348.2007.00125.x 10.1111/j.1744-7348.2007.00125.x
Taylor SE (1975) Optimal leaf form. In DM Gates, RB Schmerl, eds, Perspectives of Biophysical Ecology. Springer-Verlag, New York, pp 73-88. doi:10.1007/978-3-642-87810-7_5 10.1007/978-3-642-87810-7_5
Wu W, Zhang X, Li X, Shi W, Wang B (2012) Comparisons of different working pairs and cycles on the performance of absorption heat pump for heating and domestic hot water in cold regions. Appl Therm Eng 48:349-358. doi:10.1016/j.applthermaleng.2012.04.047 10.1016/j.applthermaleng.2012.04.047
Yunis H, Elad Y, Mahrer Y (1990) Effects of air temperature, relative humidity and canopy wetness on gray mold of cucumbers in unheated greenhouses. Phytoparasitica 18:203-215. doi:10.1007/BF02980990 10.1007/BF02980990
Zadravec P, Veberic R, Stampar F, Eler K, Schmitzer V (2013) Fruit size prediction of four apple cultivars: accuracy and timing. Sci Hortic 160:177-181. doi:10.1016/j.scienta.2013.05.046 10.1016/j.scienta.2013.05.046
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :6
  • Pages :840-849
  • Received Date :2020. 07. 28
  • Revised Date :2020. 08. 12
  • Accepted Date : 2020. 08. 26