All Issue

2024 Vol.42, Issue 5 Preview Page

Research Article

31 October 2024. pp. 654-666
Abstract
References
1

Acock B, Acock MC, Pasternak D (1990) Interaction of CO2 enrichment and temperature on carbohydrate production and accumulation in muskmelon leaves. J Amer Soc Hortic Sci 115:525-529. doi:10.21273/JASHS.115.4.525

10.21273/JASHS.115.4.525
2

Ahn SY, Kim SA, Yun HK (2019) Differentially expressed genes during berry ripening in de novo RNA assembly of Vitis flexuosa fruits. Hortic Environ Biotechnol 60:531-553. doi:10.1007/s13580-019-00148-2

10.1007/s13580-019-00148-2
3

Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067-1080. doi:10.1007/s00425-012-1650-x

10.1007/s00425-012-1650-x22569920
4

Briat JF, Duc C, Ravet K, Gaymard F (2010) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806-14. doi:10.1016/j.bbagen.2009.12.003

10.1016/j.bbagen.2009.12.00320026187
5

Bu YF, Wang S, Li CZ, Fang Y, Zhang Y, Li QY, Wang HB, Chen XS, Feng SQ (2022) Transcriptome analysis of apples in high-temperature treatments reveals a role of MdLBD37 in the inhibition of anthocyanin accumulation. Int J Mol Sci 23:3766. doi:10.3390/ijms23073766

10.3390/ijms2307376635409122PMC8998508
6

Calderón-Zavala G, Lakso N, Piccioni RM (2004) Temperature effects on fruit and shoot growth in the apple (Malus domestica) early in the season. Acta Hortic 636:447-453. doi:10.17660/ActaHortic.2004.636.54

10.17660/ActaHortic.2004.636.54
7

Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:113-116. doi:10.1007/BF02670468

10.1007/BF02670468
8

Cho EK, Choi YJ (2009) A nuclear-localized HSP70 confers thermoprotective activity and drought-stress tolerance on plants. Biotechnol Lett 31:597-606. doi:10.1007/s10529-008-9880-5

10.1007/s10529-008-9880-519034388
9

Coculo D, Lionetti V (2022) The plant invertase/pectin methylesterase inhibitor superfamily. Front in Plant Sci 13:863892. doi:10.3389/fpls.2022.863892

10.3389/fpls.2022.86389235401607PMC8990755
10

Cox MP, Peterson DA, Biggs PJ (2010) SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinform 11:485. doi:10.1186/1471-2105-11-485

10.1186/1471-2105-11-48520875133PMC2956736
11

Dela G, Or E, Ovadia R, Nissim-Levi A, Weiss D, Oren-Shamir M (2003) Changes in anthocyanin concentration and composition in 'Jaguar' rose flowers due to transient high-temperature conditions. Plant Sci 164:333-340. doi:10.1016/S0168-9452(02)00417-X

10.1016/S0168-9452(02)00417-X
12

Edwards GE, Walker D (1983) C3, C4: Mechanisms and cellular and environmental regulation of photosynthesis. University of California Press, Berkeley, CA, USA

13

Fan Y, Yuan C, Jin Y, Hu GR, Li FL (2018) Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. Algal Res 31:225-231. doi:10.1016/j.algal.2018.02.017

10.1016/j.algal.2018.02.017
14

Florides GA, Christodoulides P (2009) Global warming and carbon dioxide through sciences. Environ Intl 35:390-401. doi:10.1016/j.envint.2008.07.007

10.1016/j.envint.2008.07.00718760479
15

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, et al. (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178-D1186. doi:10.1093/nar/gkr944

10.1093/nar/gkr94422110026PMC3245001
16

Grigorova B, Vaseva II, Demirevska K, Feller U (2011) Expression of selected heat shock proteins after individually applied and combined drought and heat stress. Acta Physiol Plant 33:2041-2049. doi:10.1007/s11738-011-0733-9

10.1007/s11738-011-0733-9
17

Grudkowska M, Zagdańska B (2004) Multifunctional role of plant cysteine proteinases. Acta Biochem Polonica 51:609-624. doi:10.18388/abp.2004_3547

10.18388/abp.2004_354715448724
18

Haldimann P, Feller U (2004) Inhibition of photosynthesis by light temperature in oak (Quercus pubescens) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169-1183. doi:10.1111/j.1365-3040.2004.01222.x

10.1111/j.1365-3040.2004.01222.x
19

Han F, Chen H, Li XJ, Yang MF, Liu GS, Shen SH (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta 1794:1625-1634. doi:10.1016/j.bbapap.2009.07.013

10.1016/j.bbapap.2009.07.01319635594
20

He S, Yuan G, Bian S, Han X, Liu K, Cong P, Zhang C (2020) Major latex protein MdMLP423 negatively regulates defense against fungal infections in apple. Int J Mol Sci 21:1879. doi:10.3390/ijms21051879

10.3390/ijms2105187932164313PMC7084931
21

Higashi Y, Okazaki Y, Takano K, Myouga F, Shinozaki K, Knoch E, Fukushima A, Saito K (2018) HEAT INDUCIBLE LIPASE1 remodels chloroplastic monogalactosyldiacylglycerol by liberating α-linolenic acid in Arabidopsis leaves under heat stress. Plant Cell 30:1887-1905. doi:10.1105/tpc.18.00347

10.1105/tpc.18.0034729967047PMC6139690
22

Higuchi H, Utsunomiya N, Sakuratani T (1998) Effects of temperature on growth, dry matter production and CO2 assimilation in cherimoya (Annona cherimola Mill.) and sugar apple (Annona squamosa L.) seedlings. Sci Hortic 73:89-97. doi:10.1016/S0304-4238(97)00142-8

10.1016/S0304-4238(97)00142-8
23

Huang YC, Wu HC, Wang YD, Liu CH, Lin CC, Luo DL, Jinn TL (2017) PECTIN METHYLESTERASE34 contributes to heat tolerance through its role in promoting stomatal movement. Plant Physiol 174:748-763. doi:10.1104/pp.17.00335

10.1104/pp.17.0033528381503PMC5462046
24

Hulme M, Zaho ZH, Jiang T (1994) Recent and future climate change in East Asia. Intl J Climatol 14:637-658. doi:10.1002/joc.3370140604

10.1002/joc.3370140604
25

Kim SA, Ahn SY, Han HH, Son IC, Yun HK (2015a) Expression of genes affecting skin coloration and sugar accumulation in apple fruits at ripening stages in high temperatures. World J Engineering Technol 3:7-12. doi:10.4236/wjet.2015.33B002

10.4236/wjet.2015.33B002
26

Kim SA, Ahn SY, Son IC, Yun HK (2015b) Expression of genes related to skin coloration and sugar accumulation in grape berries at ripening stages under high temperatures. Int Proc Chem Biol Environ Eng 87:25-31. doi:10.12791/KSBEC.2016.25.1.9

10.12791/KSBEC.2016.25.1.9
27

Kim SA, Ahn SY, Yun HK (2016) Expression of genes affecting skin coloration and sugar accumulation in 'Hongro' apple fruits at ripening stages in high temperatures. Protected Hortic Plant Fac 25:9-15. doi:10.12791/KSBEC.2016.25.1.9

10.12791/KSBEC.2016.25.1.9
28

Kim SA, Ahn SY, Yun HK (2018a) Selection of differentially expressed genes using the transcriptome analysis of ripening grape berries in response to high temperature. J Agric Sci-Sri Lanka 13:15-30. doi:10.4038/jas.v13i1.8297

10.4038/jas.v13i1.8297
29

Kim SA, Oh SK, Ahn SY, Yun HK (2018b) Expression of flavonoid and stilbene synthesis genes in grape berries is affected by high temperature. Hortic Environ Biotechnol 36:607-618. doi:10.12972/kjhst.20180061

10.12972/kjhst.20180061
30

Kim SW, Gupta R, Min CW, Lee SH, Cheon YE, Meng QF, Jang JW, Hong CE, Lee JY, et al. (2019) Label-free quantitative proteomic analysis of Panax ginseng leaves upon exposure to heat stress. J Ginseng Res 4:143-153. doi:10.1016/j.jgr.2018.09.005

10.1016/j.jgr.2018.09.00530662303PMC6323179
31

Korea Rural Economic Institute (KREI) (2023) Agricultural outlook 2023. Korea Rural Economic Institute (KREI), Naju, Korea

32

Kós PB, Oláh R, Zok A, Horváth GV (2008) The role of ferritin in enhancing the stress tolerance of grapevine. Acta Biol Szeged 52:41-43

33

Lee D, Ahsan N, Lee S, Kang KY, Bahk JD, Lee I, Lee B (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369-3383. doi:10.1002/pmic.200700266

10.1002/pmic.20070026617722143
34

Lee DJ, Choi B, Noh E, Yoo SI, Kweon S, Choi S, Lee M, Kim JH, Lee Y, et al. (2023) De novo transcriptome assembly for the basal angiosperm Illicium anisatum provides insights into the biosynthesis of shikimate and neurotoxin anisatin. Hortic Environ Biotechnol 64:449-460. doi:10.1007/s13580-022-00483-x

10.1007/s13580-022-00483-x
35

Lee IB, Kang SB, Park JM (2008) Effect of elevated carbon dioxide concentration and temperature on yield ad fruit characteristics of tomato (Lycopersicon esculentum Mill.). Korean J Environ Agric 27:428-434. doi:10.5338/KJEA.2008.27.4.428

10.5338/KJEA.2008.27.4.428
36

Leyva A, Jarillo JA, Salinas J, Martinez-Zapater JM (1995) Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidopsis thaliana in a light-dependent manner. Plant Physiol 108:39-46. doi:10.1104/pp.108.1.39

10.1104/pp.108.1.3912228452PMC157303
37

Li W, Wei Z, Qiao Z, Wu Z, Cheng L, Wang Y (2013) Proteomics analysis of alfalfa response to heat stress. PLoS ONE 8:e82725. doi:10.1371/journal.pone.0082725

10.1371/journal.pone.008272524324825PMC3855785
38

Liang MH, Jiang JG, Wang L, Zhu J (2019) Transcriptomic insights into the heat stress response of Dunaliella bardawil. Enzyme Microb Technol 132:109436. doi:10.1016/j.enzmictec.2019.109436

10.1016/j.enzmictec.2019.10943631731954
39

Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagné D, Rowan DD, et al. (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176-1190. doi:10.1111/j.1365-3040.2011.02316.x

10.1111/j.1365-3040.2011.02316.x21410713
40

Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ, et al. (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174. doi:10.1186/1471-2229-12-174

10.1186/1471-2229-12-17423016701PMC3497578
41

Lohar DP, Peat WE (1998) Floral characteristics of heat-tolerance and heat-sensitive tomato cultivars at high temperature. Sci Hortic 73:53-60. doi:10.1016/S0304-4238(97)00056-3

10.1016/S0304-4238(97)00056-3
42

Lo-Piero AR, Puglisi I, Rapisarda P, Petrone G (2005) Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. J Agric Food Chem 53:9083-9088. doi:10.1021/jf051609s

10.1021/jf051609s16277406
43

Majoul-Haddad T, Bancel E, Martre P, Triboi E, Branlard G (2013) Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. J Cereal Sci 57:486-495. doi:10.1016/j.jcs.2013.02.003

10.1016/j.jcs.2013.02.003
44

Massonnet C, Costes E, Rambal S, Dreyer E, Regnard JL (2007) Stomatal regulation of photosynthesis in apple leaves: evidence for different water-use strategies between two cultivars. Ann Bot 100:1327-1356. doi:10.1093/aob/mcm222

10.1093/aob/mcm22217901058PMC2759240
45

Ministry of Agriculture, Forestry and Fisheries (MAFF) (2021a) Agriculture and climate change in Japan. Available via https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Agriculture%20and%20Climate%20Change%20in%20Japan_Tokyo_Japan_04-16-2021 Accessed 13 October 2023

46

Ministry of Agriculture, Forestry and Fisheries (MAFF) (2021b) Overview of the plan for global warming countermeasures of the Ministry of Agriculture, Forestry and Fisheries. Available via https://www.maff.go.jp/e/policies/env/env_policy/attach/pdf/index-9.pdf Accessed 4 September 2023

47

Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanin in red-wine grape under high temperature. J Expt Bot 58:1935-1945. doi:10.1093/jxb/erm055

10.1093/jxb/erm05517452755
48

Nagar P, Kumar A, Jain M, Kumari S, Mustafiz A (2020) Genome-wide analysis and transcript profiling of PSKR gene family members in Oryza sativa. PLoS ONE 15:e0236349. doi:10.1371/journal.pone.0236349

10.1371/journal.pone.023634932701993PMC7377467
49

Park MY, Song YY, Han HH, Sagong DH (2009) Influence of air temperature during the growing period on water core occurrence in 'Hongro' apple cultivar and the mitigation technique. Korean J Agr Forest Meteorol 11:100-110. doi:10.5532/KJAFM.2009.11.3.100

10.5532/KJAFM.2009.11.3.100
50

Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437-496. doi:10.1146/annurev.ge.27.120193.002253

10.1146/annurev.ge.27.120193.0022538122909
51

Qin D, Wu H, Peng H, Yao Y, Ni Z, Li Z, Zhou C, Sun Q (2008) Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array. BMC Genomics 9:432. doi:10.1186/1471-2164-9-432

10.1186/1471-2164-9-43218808683PMC2614437
52

Rizhsky L, Hongjian L, Mittler R (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol 130:1143-1151. doi:10.1104/pp.006858

10.1104/pp.00685812427981PMC166635
53

Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683-1696. doi:10.1104/pp.103.033431

10.1104/pp.103.03343115047901PMC419842
54

Rowan DD, Cao M, Lin-Wang K, Cooney JM, Jensen DJ, Austin PT, Hunt MB, Norling C, Hellens RP, et al. (2009) Environmental regulation of leaf colour in red 35S:PAP1 Arabidopsis thaliana. New Phytol 182:102-115. doi:10.1111/j.1469-8137.2008.02737.x

10.1111/j.1469-8137.2008.02737.x19192188
55

Ryu S, Kwon YH, Do KR, Han JH, Han HH, Lee HC (2015) Physiological responses and fruit quality changes of 'Fuji' apple under the high night temperature. Protected Hort Plant Fac 24:264-270. doi:10.12791/KSBEC.2015.24.3.264

10.12791/KSBEC.2015.24.3.264
56

Salvucci ME, Crafts-Brandner SJ (2004) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460-1470. doi:10.1104/pp.103.038323

10.1104/pp.103.03832315084731PMC419822
57

Saure MC (1990) External control of anthocyanin formation in apple. Sci Hortic 42:181-218. doi:10.1016/0304-4238(90)90082-P

10.1016/0304-4238(90)90082-P
58

Son IC, Han JH, Cho JG, Kim SH, Chang EH, Oh SI, Moon KH, Choi IM (2014) Effects of the elevated temperature and carbon dioxide on vine growth and fruit quality of 'Campbell Early' grapevines (Vitis labruscana). Korean J Hortic Sci Technol 32:781-787. doi:10.7235/hort.2014.13059

10.7235/hort.2014.13059
59

Song KJ, Hwang JH, Yun HK (2003) Changes of soluble sugar and starch concentrations in fruits of apple cultivars differing in maturity. Hort Environ Biotechnol 44:207-210

60

Sun P, Mantri N, Lou H, Hu Y, Sun D, Zhu Y, Dong T, Lu H (2012) Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria × ananassa Duch.) at two levels of nitrogen application. PLoS ONE 7:e41000. doi:10.1371/journal.pone.0041000

10.1371/journal.pone.004100022911728PMC3404062
61

Tian J, Han ZY, Zhang LR, Song TT, Zhang J, Li JY, Yao Y (2015) Induction of anthocyanin accumulation in crabapple (Malus cv.) leaves by low temperatures. HortScience 50:640-649. doi:10.21273/HORTSCI.50.5.640

10.21273/HORTSCI.50.5.640
62

Tomana T, Yamada H (1988) Change in sugar composition during maturation stage of apple fruit grown at different locations. J Jpn Soc Hortic Sci 57:178-183. doi:10.2503/jjshs.57.178

10.2503/jjshs.57.178
63

Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579-620. doi:10.1146/annurev.pp.42.060191.003051

10.1146/annurev.pp.42.060191.003051
64

Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244-252. doi:10.1016/j.tplants.2004.03.006

10.1016/j.tplants.2004.03.00615130550
65

Wang X, Dinler BS, Vignjevic M, Jacobsen S, Wollenweber B (2015) Physiological and proteome studies of responses to heat stress during grain filling in contrasting wheat cultivars. Plant Sci 230:33-50. doi:10.1016/j.plantsci.2014.10.009

10.1016/j.plantsci.2014.10.00925480006
66

Wang X, Xu C, Cai X, Wang Q, Dai S (2017) Heat-responsive photosynthetic and signaling pathways in plants: Insight from proteomics. Int J Mol Sci 18:2191. doi:10.3390/ijms18102191

10.3390/ijms1810219129053587PMC5666872
67

Wu HC, Huang YC, Stracovsky L, Jinn TL (2017) Pectin methylesterase is required for guard cell function in response to heat. Plant Signal Behav 12:e1338227. doi:10.1080/15592324.2017.1338227

10.1080/15592324.2017.133822728617153PMC5566256
68

Yang L, Fang J, Wang J, Hui S, Zhou L, Xu B, Chen Y, Zhang Y, Lai C, et al. (2023) Genome-wide identification and expression analysis of 3-ketoacyl-CoA synthase gene family in rice (Oryza sativa L.) under cadmium stress. Front Plant Sci 14:1222288. doi:10.3389/fpls.2023.1222288

10.3389/fpls.2023.122228837554558PMC10406525
69

Yuan G, He S, Bian S, Han X, Liu K, Cong P, Zhang C (2020) Genome-wide identification and expression analysis of major latex protein (MLP) family genes in the apple (Malus domestica borkh.) genome. Gene 733:144275. doi:10.1016/j.gene.2019.144275

10.1016/j.gene.2019.14427531809843
70

Yun EJ, Kim JH, Moon KH (2020) Future projection of climatic zone shifts over Korean peninsula under the RCP8.5 scenario using high-definition digital agro-climate maps. Korean J Agr Forest Meteorol 22:287-298. doi:10.5532/KJAFM.2020.22.4.287

71

Zhang MH, Li GW, Huang W, Bi T, Chen GY, Tang ZC, Su WA, Sun WN (2010) Proteomic study of Carissa spinarum in response to combined heat and drought stress. Proteomics 10:3117-3129. doi:10.1002/pmic.200900637

10.1002/pmic.20090063720661954
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 42
  • No :5
  • Pages :654-666
  • Received Date : 2023-11-09
  • Revised Date : 2024-01-02
  • Accepted Date : 2024-01-02