All Issue

2015 Vol.33, Issue 3 Preview Page
30 June 2015. pp. 317-325
Abstract
References
1
Abeles, F.B. and C.L. Biles. 1991. Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol. 95:269-273.
2
Bandurski, R.S., A. Schulze, A. Leznicki, D. Reinecke, P. Jensen, M. Desrosiers, and B. Epel. 1988. Regulation of the amount of IAA in seedling plants, p. 21-32. In: Kutacek M, R.S. Bandurski, and J. Krekule, (eds) Physiology and biochemistry of auxins in plants. Academia, Prague.
3
Bonghi, C., L. Trainotti, A. Botton, A. Tadiello, A. Rasori, F. Ziliotto, V. Zaffalon, G. Casadoro, and A. Ramina. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biol. 11:107.
4
Chen, D., Y. Ren, Y. Deng, and J. Zhao. 2010. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM H+-ATPase activities. J. Exp. Bot. 61:1853-1867.
5
Dong, N.G., D. Pei, and W.L. Yin. 2012. Tissue-specific localization and dynamic changes of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunohistochemistry. Plant Biotechnol. Rep. 6:165-174.
6
Elobeid, M., C. Göbel, L. Feussner, and A. Polle. 2012. Cadmium interferes with auxin physiology and lignification in polar. J. Exp. Bot. 63:1413-1421.
7
Goetz, M., L.C. Hooper, S.D. Johnson, J.C.M. Rodrigues, A. Vivian-Smit, and A.M. Koltunow. 2007. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol. 145:351-366.
8
Hou, Z.X. and W.D. Huang. 2005. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222:678-687.
9
Hou, Z.X. and W.D. Huang. 2004. Immunochemical localization of IAA and ABP1 in development Strawberry fruit. J. Hort. Sci. Biotechnol. 79: 693-698.
10
Kalluri, U.C., M.M. Basu, S.S. Jawdy, and G.A. Tuskan. 2011. Auxin signaling and response mechanisms and roles in plant growth and development. Genetics, Genomics and Breeding of Poplar, p 231-254.
11
Liu, D.J., J.Y. Chen, and W.J. Lu. 2011. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development, Mol. Biol. Rep. 38:1187-1193.
12
Liu, S.C., W.Q. Chen, L. Qu, Y. Gai, and X.N. Jiang. 2013. Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography-electrospray ionization- ion trap mass spectrometry. Anal. Bioanul. Chem. 405:1257-1266.
13
Miller, A.N., C.S. Walsh, and J.D. Cohen. 1987. Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv.Redhaven) during development. Plant Physiol. 84:491-494.
14
Molesini, B., T. Pandolfini, G.L. Rotino, V. Dani, and A. Spena. 2009. Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol. 149:534-548.
15
Mounet, F., A. Moing, V. Garcia, J. Petit, M. Maucourt, C. Deborde, S. Bernillon, G. Le Gall, I. Colquhoun, M. Defernez, J.L. Giraudel, D. Rolin, C. Rothan, and M. Lemaire-Chamley. 2009. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149:1505-1528.
16
Paponov, I.A., W.D. Tea, M. Trebar, I. Blilou, and K. Palme. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 10: 170-177.
17
Petrášek, J., K. Malínská, and E. Zažímalová. 2011. Auxin Transporters Controlling Plant Development, p. 255-290. In: Transporters and Pumps in Plant Signaling. Springer Berlin Heidelberg.
18
Ruegger, M., E. Dewey, L. Hobbie, D. Brown, P. Bernasconi, J. Turner, G. Muday, and M. Estelle. 1997. Reduced naphthyl-phthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745-757.
19
Sieburth, L.E. 1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 121:1179-1190.
20
Thomas, C., R. Bronner, J. Molinier, E. Prinsen, H. Van Onckelen, and G. Hahne. 2002. Immunocytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577-583
21
Torrigiani, P., D. Bressanin, K.B. Ruiz, A. Tadiello, L.Trainotti, C. Bonghi, V. Ziosi, and G. Costa. 2012. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol. Plant 146:86-98.
22
Trainotti, L., A. Tadiello, and G. Casadoro. 2007. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J. Exp. Bot. 58:3299-3308.
23
Vanneste, S. and J. Friml. 2009. Auxin: A trigger for change in plant development. Cell 136:1005-1016.
24
Verde, I., A. Abbott, S. Simone, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45:487-494. Pages:
25
Wang, H., B. Jones, Z.G. Li, P. Frasse, C. Delalande, F. Regad, S. Chaabouni, A. Latche, J.C. Pech, and M. Bouzaven. 2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell 17: 2676-2692.
26
Yoshida, S., S. Saiga, and D. Weijers. 2012. Auxin regulation of embryonic root formation. Plant Cell Physiol. 54:325-336.
27
Zhang, J., Z.M. Liu, H.P. Ma and S.P. Ma. 2009. Studies on anatomy and distribution of the vascular bundles in the peach fruit. Acta Hortic. Sin. 36:639-646. (in Chinese)
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 33
  • No :3
  • Pages :317-325
  • Received Date : 2014-05-22
  • Revised Date : 2014-12-09
  • Accepted Date : 2014-12-21