All Issue

2021 Vol.39, Issue 4 Preview Page

Research Article

August 2021. pp. 482-496
Abstract
References
1
Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, Ribas de Pouplana L, Martínez-Castilla L, Yanofsky MF (2000) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328-5333. doi:10.1073/pnas.97.10.5328 10.1073/pnas.97.10.5328
2
Amasino RM (2005) Vernalization and flowering time. Curr Opin Biotechnol 16:154-158. doi:10.1016/j.copbio.2005.02.004 10.1016/j.copbio.2005.02.00415831380
3
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242. doi:10.1186/1471-2164-8-242 10.1186/1471-2164-8-242
4
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202-208. doi:10.1093/nar/gkp335 10.1093/nar/gkp33519458158PMC2703892
5
Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464-489. doi:10.1016/S1055-7903(03)00207-0 10.1016/S1055-7903(03)00207-0
6
Bemer M, Heijmans K, Airoldi C, Davies B, Angenent GC (2010) An atlas of type I MADS-box gene expression during female gametophyte and seed development in Arabidopsis. Plant Physiol 154:287-300. doi:10.1104/pp.110.160770 10.1104/pp.110.160770
7
Chen G, Li J, Liu Y, Zhang Q, Gao Y, Fang K, Cao Q, Qin L, Xing Y (2019) Roles of the GA-mediated SPL gene family and miR156 in the floral development of Chinese chestnut (Castanea mollissima). Int J Mol Sci 20:1577. doi:10.3390/ijms20071577 10.3390/ijms20071577
8
Daminato M, Masiero S, Resentini F, Lovisetto A, Casadoro G (2014) Characterization of TM8, a MADS-box gene expressed in tomato flowers. BMC Plant Biol 14:319. doi:10.1186/s12870-014-0319-y 10.1186/s12870-014-0319-y
9
De Bodt S, Raes J, Van de Peer Y, Theissen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8:475-483. doi:10.1016/j.tplants.2003.09.006 10.1016/j.tplants.2003.09.00614557044
10
Feng Y, Shen Y, Qin L, Cao Q, Han Z (2011) Short catkin 1, a novel mutant of Castanea mollissima, is associated with programmed cell death during chestnut staminate flower differentiation. Sci Hortic 130:431-435. doi:10.1016/j.scienta.2011.07.014 10.1016/j.scienta.2011.07.014
11
Gao Y, Sun J, Sun Z, Xing Y, Zhang Q, Fang K, Cao Q, Qin L (2020) The MADS-box transcription factor CmAGL11 modulates somatic embryogenesis in Chinese chestnut (Castanea mollissima Blume). J Integr Agric 19:1033-1043. doi:10.1016/S2095-3119(20)63157-4 10.1016/S2095-3119(20)63157-4
12
Goldberg-Moeller R, Shalom L, Shlizerman L, Samuels S, Zur N, Ophir R, Blumwald E, Sadka A (2013) Effects of gibberellin treatment during flowering induction period on global gene expression and the transcription of flowering-control genes in Citrus buds. Plant Sci 198:46-57. doi:10.1016/j.plantsci.2012.09.012 10.1016/j.plantsci.2012.09.01223199686
13
Grimplet J, Martínez-Zapater JM, Carmona MJ (2016) Structural and functional annotation of the MADS-box transcription factor family in grapevine. BMC Genomics 17:80. doi:10.1186/s12864-016-2398-7 10.1186/s12864-016-2398-7
14
Guo XP, Li XL, Duan XW, Shen YY, Xing Y, Cao QQ, Qin L (2012) Characterization of sck1, a novel Castanea mollissima mutant with the extreme short catkins and decreased gibberellin. PLoS ONE 7:e43181. doi:10.1371/journal.pone.0043181 10.1371/journal.pone.0043181
15
Heijmans K, Morel P, Vandenbussche M (2012) MADS-box genes and floral development: the dark side. J Exp Bot 63:5397-5404. doi:10.1093/jxb/ers233 10.1093/jxb/ers233
16
Hemming MN, Trevaskis B (2011) Make hay when the sun shines: The role of MADS-box genes in temperature-dependant seasonal flowering responses. Plant Sci 180:447-453. doi:10.1016/j.plantsci.2010.12.001 10.1016/j.plantsci.2010.12.001
17
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theissen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss physcomitrella patens. Mol Biol Evol 19:801-814. doi:10.1093/oxfordjournals.molbev.a004137 10.1093/oxfordjournals.molbev.a004137
18
Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529. doi:10.1038/35054083 10.1038/35054083
19
Hou XJ, Liu SR, Khan MRG, Hu CH, Zhang JZ (2014) Genome-wide identification, classification, expression profiling, and SSR marker development of the MADS-box gene family in citrus. Plant Mol Biol Rep 32:28-41. doi:10.1007/s11105-013-0597-9 10.1007/s11105-013-0597-9
20
Hu L, Liu S (2012) Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245-256. doi:10.1139/g2012-009 10.1139/g2012-009
21
Immink RG, Gadella TW Jr, Ferrario S, Busscher M, Angenent GC (2002) Analysis of mads box protein-protein interactions in living plant cells. Proc Natl Acad Sci USA 99:2416-2421. doi:10.1073/pnas.042677699 10.1073/pnas.042677699
22
Kaufmann K, Melzer R, Theissen G (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347:183-198. doi:10.1016/j.gene.2004.12.014 10.1016/j.gene.2004.12.01415777618
23
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948. doi:10.1093/bioinformatics/btm404 10.1093/bioinformatics/btm404
24
Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84-94. doi:10.1016/j.gene.2006.05.022 10.1016/j.gene.2006.05.022
25
Liu T, Li X, Xu P, Zhou Z, Hu Y (2006) Cloning and expression of a MADS-box protein gene (CmMADS3) from Castanea mollissima. Acta Botanica Yunnanica 28:295-299
26
Liu TK, Li Y, Zhang CW, Qian Y, Wang Z, Hou XL (2012) Overexpression of FLOWERING LOCUS C isolated from non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino), influences fertility in Arabidopsis. Plant Mol Biol Rep 30:1444-1449. doi:10.1007/s11105-012-0469-8 10.1007/s11105-012-0469-8
27
Lu S, Wei H, Wang Y, Wang H, Yang R, Zhang X, Tu J (2012) Overexpression of a transcription factor OsMADS15 modifies plant architecture and flowering time in rice (Oryza sativa L.). Plant Mol Biol Rep 30:1461-1469. doi:10.1007/s11105-012-0468-9 10.1007/s11105-012-0468-9
28
Mert C, Soylu A (2006) Flower and stamen structures of Male-fertile and Male-sterile chestnut(Castanea sativa Mill.) cultivars. J Am Soc Hortic Sci 131:752-759. doi:10.21273/JASHS.131.6.752 10.21273/JASHS.131.6.752
29
Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538-1551. doi:10.1105/tpc.011544 10.1105/tpc.011544
30
Qiu WM, Xu YH, He XJ (2016) Identification and expression analysis of MADS-box genes related to female and male flowers development in chestnut. Acta Horticulturae Sinica 43:1593-1604
31
Riechmann JL, Krizek BA, Meyerowitz EM (1996) Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A 93:4793-4798. doi:10.1073/pnas.93.10.4793 10.1073/pnas.93.10.4793
32
Roberto B, Grazia V, Giovanni M, Rosalina V (1995) Floral biology and embryo development in chestnut (Castanea sativa Mill.). Hortscience 30:1283-1286. doi:10.21273/HORTSCI.30.6.1283 10.21273/HORTSCI.30.6.1283
33
Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1-13. doi:10.1111/j.1432-1033.1995.tb20430.x 10.1111/j.1432-1033.1995.tb20430.x
34
Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40:3901-3911. doi:10.1007/s11033-012-2438-6 10.1007/s11033-012-2438-6
35
Smaczniak C, Immink RG, Angenent GC, Kaufmann K (2012) Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139:3081-3098. doi:10.1242/dev.074674 10.1242/dev.07467422872082
36
Sobral R, Costa MMR (2017) Role of floral organ identity genes in the development of unisexual flowers of Quercus suber L. Sci Rep 7:10368. doi:10.1038/s41598-017-10732-0 10.1038/s41598-017-10732-0
37
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739. doi:10.1093/molbev/msr121 10.1093/molbev/msr12121546353PMC3203626
38
Thomson B, Zheng B, Wellmer F (2017) Floral organogenesis: when knowing your ABCs is not enough. Plant Physiol 173:56-64. doi:10.1104/pp.16.01288 10.1104/pp.16.0128827789738PMC5210729
39
Tian Y, Dong Q, Ji Z, Chi F, Cong P, Zhou Z (2015) Genome-wide identification and analysis of the MADS-box gene family in apple. Gene 555:277-290. doi:10.1016/j.gene.2014.11.018 10.1016/j.gene.2014.11.018
40
Verelst W, Saedler H, Münster T (2007a) MIKC* MADS-Protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol 143:447-460. doi:10.1104/pp.106.089805 10.1104/pp.106.089805
41
Verelst W, Twell D, Folter SD, Immink R, Saedler H, Münster T (2007b) MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol 8:R249. doi:10.1186/gb-2007-8-11-r249 10.1186/gb-2007-8-11-r24918034896PMC2258202
42
Wang X, Zheng Y, Su S, Ao Y (2019) Discovery and Profiling of microRNAs at the Critical Period of Sex Differentiation in Xanthoceras sorbifolium Bunge. Forests 10:1141. doi:10.3390/f10121141 10.3390/f10121141
43
Warmund MR (2011) Chinese chestnut (Castanea mollissima) as a niche crop in the central region of the United States. Hortscience 46:345-347. doi:10.21273/HORTSCI.46.3.345 10.21273/HORTSCI.46.3.345
44
Wells CE, Vendramin E, Jimenez TS, Verde I, Bielenberg DG (2015) A genome-wide analysis of MADS-box genes in peach [Prunus persica (L.) Batsch]. BMC Plant Biol 15:41. doi:10.1186/s12870-015-0436-2 10.1186/s12870-015-0436-2
45
Xing Y, Liu Y, Zhang Q, Nie X, Sun Y, Zhang Z, Li H, Fang K, Wang G, et al. (2019) Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience 8:1-7. doi:10.1093/gigascience/giz112 10.1093/gigascience/giz112
46
Xu Z, Zhang Q, Sun L, Du D, Cheng T, Pan H, Yang W, Wang J (2014) Genome-wide identification, characterisation and expression analysis of the MADS-box gene family in Prunus mume. Mol Genet Genomics 289:903-920. doi:10.1007/s00438-014-0863-z 10.1007/s00438-014-0863-z
47
Zhang L, Zhao J, Feng C, Liu M, Wang J, Hu Y (2017) Genome-wide identification, characterization of the MADS-box gene family in Chinese jujube and their involvement in flower development. Sci Rep 7:1025. doi:10.1038/s41598-017-01159-8 10.1038/s41598-017-01159-8
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :4
  • Pages :482-496
  • Received Date :2021. 01. 17
  • Revised Date :2021. 02. 10
  • Accepted Date : 2021. 04. 21