All Issue

2022 Vol.40, Issue 5 Preview Page

Research Article

31 October 2022. pp. 471-480
Abstract
References
1
Bendahmane M, Dubois A, Raymond O, Bris ML (2013) Genetics and genomics of flowers initiation and development in roses. J Exp Botany 64:847-857. doi:10.1093/jxb/ers387 10.1093/jxb/ers38723364936PMC3594942
2
Chen Y, Wen H, Pan J, Du H, Zhang K, Zhang L, Yu Y, He H, Cai R, et al. (2021) CsUFO is involved in the formation of flowers and tendrils in cucumber. Theor Appl Genet 134:2141-2150. doi:10.1007/s00122-021-03811-4 10.1007/s00122-021-03811-433740111
3
Cheng Z, Zhou S, Liu X, Che Gen, Wang Z, Gu R, Shen J, Song W, Zhou Z, et al. (2020) The MADS-box gene CsSHP participates in fruit maturation and floral organ development in cucumber. Front Plant Sci 10:1781. doi:10.3389/fpls.2019.01781 10.3389/fpls.2019.0178132117344PMC7025597
4
Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90:708-719. doi:10.1111/tpj.13461 10.1111/tpj.1346127995671
5
Coen E, Meyerowitz E (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31-37. doi:10.1038/353031a0 10.1038/353031a01715520
6
Desta B, Tena N, Amare G (2022) Response of rose (Rosa hybrida L.) plant to temperature. Asian J Plant Soil Sci 7:93-101
7
Dubois A, Raymond O, Maene M, Baudino S, Langlade NB, Boltz VR, Vergne P, Bendahmane M (2010) Tinkering with the C-Function: A molecular frame for the selection of double flowers in cultivated roses. PLoS ONE 5:e9288. doi:10.1371/journal.pone.0009288 10.1371/journal.pone.000928820174587PMC2823793
8
Dubois A, Carrere S, Raymond O, Pouvreau B, Cottret L, Roccia A, Onesto JP, Sakr S, Atanassova R, et al. (2012) Transcriptome database resource and gene expression atlas for the rose. Bio Med Central genomic 13:638. doi:10.1186/1471-2164-13-638 10.1186/1471-2164-13-63823164410PMC3518227
9
Gattolin S, Cirilli M, Chessa S, Stella A, Bassi D, Rossini L (2020) Mutations in orthologous PETALOSA TOE-type genes cause a dominant double-flower phenotype in phylogenetically distant eudicots. J Exp Bot 71:2585-2595. doi:10.1093/jxb/eraa032 10.1093/jxb/eraa03231960023PMC7210751
10
Ha STT, Jung YO, Lim JH (2020) Pretreatment with Scutellaria baicalensis Georgi extract improves the postharvest quality of cut roses (Rosa hybrida L.). Hortic Environ Biotechnol 61:511-524. doi:10.1007/s13580-020-00238-6 10.1007/s13580-020-00238-6
11
Ha STT, Nguyen TK, Lim JH (2021) Effects of air-exposure time on water relations, longevity, and aquaporin-related gene expression of cut roses. Hortic Environ Biotechnol 62:63-75. doi:10.1007/s13580-020-00302-1 10.1007/s13580-020-00302-1
12
Han Y, Tang A, Wan H, Zhang T, Cheng T, Wang J, Yang W, Pan H, Zhang Q (2018) An APETALA2 homolog, RcAP2, regulates the number of rose petals derived from stamens and response to temperature fluctuations. Front Plant Sci 9:481. doi:10.3389/fpls.2018.00481 10.3389/fpls.2018.0048129706982PMC5906699
13
Im NH, Kang H, Mun JS, Lee HB, An SK, Kim KS (2021) Flowering control of Elsholtzia angustifolia (Loes.) Kitag., a short-day plant. Hortic Sci Technol 39:424-430. doi:10.7235/HORT.20210038
14
Irani SF, Arab M (2017) Early selection of couble flowers based on cotyledon shape in cut stock (Matthiola incana L.) flowers. Hortic Sci Technol 35:265-275. doi:10.12972/kjhst.20170029 10.12972/kjhst.20170029
15
Kieffer M, Davies B (2001) developmental programmers in floral organ formation. Semin Cell Dev Biol 12:373-380. doi:10.1006/scdb.2001.0266 10.1006/scdb.2001.026611535045
16
Kim WS, Lieth JH (2012) Simulation of year-round plant growth and nutrient uptake in Rosa hybrida over flowering cycles. Hortic Environ Biotechnol 53:193-203. doi:10.1007/s13580-012-0054-y 10.1007/s13580-012-0054-y
17
Lee MJ, Seo HS, Min SY, Lee J, Park S, Jeon JB, Kim J, Oh W (2021) Effects of supplemental lighting with high-pressure sodium or plasma lamps on quality and yield of cut roses. Hortic Sci Technol 39:49-61. doi:10.7235/HORT.20210005 10.7235/HORT.20210005
18
Lee SK, Kim WS (2015) Floral pigmentation and expression of anthocyanin-related genes in bicolored roses 'Pinky Girl' as affected by temporal heat stress. Kor J Hortic Sci Technol 33:923-931. doi:10.7235/hort.2015.15077 10.7235/hort.2015.15077
19
Liu Y, Chen G, Gao Y, Fang K, Zhang Q, Cao Q, Qin L, Su S (2021) Identification and characterization of MADS-box Genes involved in floral organ development in chinese chestnut (Castanea mollissima Blume). Hortic Sci Technol 39:482-496. doi:10.7235/HORT.20210043 10.7235/HORT.20210043
20
Ma N, Chen W, Fan T, Tian Y, Zhang S, Zeng D, Li Y (2015) Low temperature-induced DNA hypermethylation attenuates expression of RhAG, an AGAMOUS homolog, and increases petal number in rose (Rosa hybrida). BMC Plant Biol 15:237. doi:10.1186/s12870-015-0623-1 10.1186/s12870-015-0623-126438149PMC4595006
21
Müller F, Xu J, Kristensen L, Wolters-Arts M, de Groot PFM, Jansma SY, Mariani C, Park S, Rieu I (2016) High-temperature-induced defects in tomato (Solanum lycopersicum) anther and pollen development are associated with reduced expression of B-class floral patterning genes. PLoS One 11:e0167614. doi:10.1371/journal.pone.0167614 10.1371/journal.pone.016761427936079PMC5147909
22
Roh YS, Yoo YK (2021) Growth and flowering by relighting and daminozide treatment in the flower bud formation stage of Chrysanthemummorifolium 'Baekma' cut flowers. Hortic Sci Technol 39:204-212. doi:10.7235/HORT.20210018 10.7235/HORT.20210018
23
Rusanov K, Kovacheva N, Rusanova M, Linde M, Debener T, Atanassov I (2019) Genetic control of flower petal number in Rosa x damascena Mill f. trigintipetala. Biotechnol Biotechnol Equip 33:597-604. doi:10.1080/13102818.2019.1599731 10.1080/13102818.2019.1599731
24
Seo JH, Kim WS (2013) Growth, floral morphology, and phytohormone levels of flowering shoots with bent peduncle in greenhouse-grown cut rose 'Beast. Kor J Hortic Sci Technol 31:714-719. doi:10.7235/hort.2013.13076 10.7235/hort.2013.13076
25
Shi L, He S, Wang Z, Kim WS (2021) Influence of nocturnal supplemental lighting and different irrigation regimes on vase life and vase performance of the hybrid rose 'Charming Black'. Hortic Sci Technol 39:23-36. doi:10.7235/hort.20210003 10.7235/hort.20210003
26
Shin YC, Hwang JY, Yeon JY, Kim WS (2022) Changes in floral pigments and scent compounds in garden roses during floral bud development. Flower Res J 30:26-33. doi:10.11623/frj.2022.30.1.04 10.11623/frj.2022.30.1.04
27
Wang Y, Impa SM, Sunkar R, Jagadish SVK (2021) The neglected other half - role of the pistil in plant heat stress responses. Plant Cell Environ 44:2200-2210. doi:10.1111/pce.14067 10.1111/pce.1406733866576
28
Yan H, Zhang H, Wang Q, Jian H, Qiu X, Baudino S, Just J, Raymond O, Gu L, et al. (2016) The Rosa chinensis cv. Viridiflora phyllody phenotype is associated with misexpression of flower organ identity genes. Front Pant Sci 7:996. doi:10.3389/fpls.2016.00996 10.3389/fpls.2016.00996
29
Yeon JY, Kim WS (2017) Effect of the greenhouse environment on cut flower quality and vase life of cut roses during the winter season. Flower Res J 25:142-148. doi:10.11623/frj.2017.25.3.07 10.11623/frj.2017.25.3.07
30
Yeon JY, Kim WS (2020a) Floral pigment-scent associations in eight cut rose cultivars with various petal colors. Hortic Environ Biotechnol 61:633-641. doi:10.1007/s13580-020-00249-3 10.1007/s13580-020-00249-3
31
Yeon JY, Kim WS (2020b) Heat stress to the developing floral buds decreases the synthesis of flowering pigments and scent compounds in the rose petals. Acta Hortic 1291:249-260. doi:10.17660/ActaHortic.2020.1291.30 10.17660/ActaHortic.2020.1291.30
32
Yeon JY, Kim WS (2020c) Positive correlation between color and scent in rose petals with floral bud development. Hortic Sci Technol 38:608-619. doi:10.7235/HORT.20200056 10.7235/HORT.20200056
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 40
  • No :5
  • Pages :471-480
  • Received Date : 2022-08-12
  • Revised Date : 2022-09-07
  • Accepted Date : 2022-09-14