All Issue

2021 Vol.39, Issue 4

Research Article

August 2021. pp. 413-423
Aihemaiti A, Gao Y, Meng Y, Chen X, Liu J, Xiang H, Xu Y, Jiang J (2020) Review of plant-vanadium physiological interactions, bioaccumulation, and bioremediation of vanadium-contaminated sites. Sci Total Environ 712:135637. doi:10.1016/j.scitotenv.2019.135637 10.1016/j.scitotenv.2019.13563731810710
Akoumianaki-Ioannidou A, Barouchas PE, Ilia E, Kyramariou A, Moustakas NK (2016) Effect of vanadium on dry matter and nutrient concentration in sweet basil (Ocimum basilicum L.). Aust J Crop Sci 10:199-206
Akoumianaki-Ioannidou A, Barouchas PE, Kyramariou A, Ilia E, Moustakas NK (2015) Effect of vanadium on dry matter and nutrient concentration in pennyroyal (Mentha pulegium L). Bull UASVM Hortic 72:295-298. doi:10.15835/buasvmcn-hort:11348 10.15835/buasvmcn-hort:11348
Altaf MM, Diao XP, Rehman A, Imtiaz M, Shakoor A, Altaf MA, Younis H, Fu P, Ghani MU (2020) Effect of vanadium on growth, photosynthesis, reactive oxygen species, antioxidant enzymes, and cell death of rice. J Soil Sci Plant Nutr 20:2643-2656. doi:10.1007 /s42729-020-00330-x 10.1007/s42729-020-00330-x
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1-15. doi:10.1104/pp.24.1.1 10.1104/pp.24.1.1
Ashwlayan VD, Kumar A, Verma M, Garg VK, Gupta SK (2018) Therapeutic potential of Calendula officinalis. Pharm Pharmacol Int J 6:149-155. doi:10.15406/ppij.2018.06.00171 10.15406/ppij.2018.06.00171
Boldrin PF, de Figueiredo MA, Yang Y, Luo H, Giri S, Hart JJ, Faquin V, Guilherme LRG, Thannhauser TW, et al. (2016) Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum). Physiol Plant 158:80-91. doi:10.1111/ppl.12465 10.1111/ppl.12465
Bragueto EG, Cardoso BLC, Sousa SJ, Mendanha CT, Boscacci MM, Araújo VM, Azevedo L, Furtado MM, Sant'Ana AS, et al. (2019) From the field to the pot: Phytochemical and functional analyses of Calendula officinalis L. flower for incorporation in an organic yogurt. Antioxidants 8:559. doi:10.3390/antiox8110559 10.3390/antiox8110559
Caffagni A, Arru L, Meriggi P, Milc J, Perata P, Pecchioni N (2011) Iodine fortification plant screening process and accumulation in tomato fruits and potato tubers. Commun Soil Sci Plant Anal 42:706-718. doi:10.1080/00103624.2011.550372 10.1080/00103624.2011.550372
D'Amato R, Fontanella MC, Falcinelli B, Beone GM, Bravi E, Marconi O, Benincasa P, Businelli D (2018) Selenium biofortification in rice (Oryza sativa L.) sprouting: effects on Se yield and nutritional traits with focus on phenolic acid profile. J Agric Food Chem 66:4082-4090. doi:10.1021/acs.jafc.8b00127 10.1021/acs.jafc.8b00127
D'Aquino L, de Pinto MC, Nardi L, Morgana M, Tommasi F (2009) Effect of some light rare earth elements on seed germination, seedling growth and antioxidant metabolism in Triticum durum. Chemosphere 75:900-905. doi:10.1016/j.chemosphere.2009.01.026 10.1016/j.chemosphere.2009.01.026
Dai JL, Zhu YG, Zhang M, Huang YZ (2004) Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol Trace Elem Res 101:265-276. doi:10.1385/BTER:101:3:265 10.1385/BTER:101:3:265
Davies B (1976) Carotenoids. In TW Goodwin, ed, Chemistry and biochemistry of plant pigments. Academic Press, London, UK, pp 38-165
Dobosy P, Vetési V, Sandil S, Endrédi A, Kröpfl K, Óvári M, Takács T, Rékási M, Záray G (2020) Effect of irrigation water containing iodine on plant physiological processes and elemental concentrations of cabbage (Brassica oleracea L. var. capitata) and tomato (Solanum lycopersicum L.) cultivated in different soils. Agronomy 10:720. doi:10.3390/agronomy10050720 10.3390/agronomy10050720
Fashui H (2002) Study on the mechanism of cerium nitrate effects on germination of aged rice seed. Biol Trace Elem Res 87:191-200. doi:10.1385/BTER:87:1-3:191 10.1385/BTER:87:1-3:191
García-Jiménez A, Trejo-Téllez LI, Guillén-Sánchez D, Gómez-Merino FC (2018) Vanadium stimulates pepper plant growth and flowering, increases concentrations of amino acids, sugars and chlorophylls, and modifies nutrient concentrations. PLoS ONE 13:e0201908. doi:10.1371/journal.pone.0201908 10.1371/journal.pone.020190830092079PMC6085002
Gil J, Alvarez CE, Martinez MC, Pérez N (1995) Effect of vanadium on lettuce growth, cationic nutrition, and yield. J Environ Sci Health A 30:73-87. doi:10.1080/10934529509376186 10.1080/10934529509376186
Gómez-Merino FC, Trejo-Téllez LI (2018) The role of beneficial elements in triggering adaptive responses to environmental stressors and improving plant performance. In S Vats, ed, Biotic and abiotic stress tolerance in plants. Springer, Singapore, pp 137-172. doi:10.1007/978-981-10-9029-5_6 10.1007/978-981-10-9029-5_6
Grzanka M, Smoleń S, Kováčik P (2020) Effect of vanadium on the uptake and distribution of organic and inorganic forms of iodine in sweetcorn plants during early-stage development. Agronomy 10:1666. doi:10.3390/agronomy10111666 10.3390/agronomy10111666
Hartikainen H, Pietola L, Simojoki A (2001) Quantification of fine root responses to selenium toxicity. Agric Food Sci 10:53-58. doi:10.23986/afsci.5679 10.23986/afsci.5679
Hernández-Díaz JA, Garza‐García JJO, Zamudio‐Ojeda A, León-Morales JM, López-Velázquez JC, García‐Morales S (2020) Plant‐mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. J Sci Food Agric (in press). doi:10.1002/jsfa.10767 10.1002/jsfa.10767
Hong F, Wang L, Meng X, Wei Z, Zhao G (2002) The effect of cerium (III) on the chlorophyll formation in spinach. Biol Trace Elem Res 89:263-276. doi:10.1385/BTER:89:3:263 10.1385/BTER:89:3:263
Hu X, Ding Z, Wang X, Chen Y, Dai L (2002) Effects of lanthanum and cerium on the vegetable growth of wheat (Triticum aestivum L.) seedlings. Bull Environ Contam Toxicol 69:727-733. doi:10.1007/s00128-002-0121-7 10.1007/s00128-002-0121-7
Jahani S, Saadatmand S, Mahmoodzadeh H, Khavari-Nejad RA (2019) Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia 74:1063-1075. doi:10.2478/s11756-019-00239-6 10.2478/s11756-019-00239-6
Larsson MA, Baken S, Gustafsson JP, Hadialhejazi G, Smolders E (2013) Vanadium bioavailability and toxicity to soil microorganisms and plants. Environ Toxicol Chem 32:2266-2273. doi:10.1002/etc.2322 10.1002/etc.232223832669
Lawson PG, Daum D, Czauderna R, Meuser H, Härtling JW (2015) Soil versus foliar iodine fertilization as a biofortification strategy for field-grown vegetables. Front Plant Sci 6:450. doi:10.3389/fpls.2015.00450 10.3389/fpls.2015.0045026157445PMC4477264
León-Morales JM, Panamá-Raymundo W, Langarica-Velázquez EC, García-Morales S (2019) Selenium and vanadium on seed germination and seedling growth in pepper (Capsicum annuum L.) and radish (Raphanus sativus L.). Bio Ciencias 6:e425. doi:10.15741/revbio.06.e425 10.15741/revbio.06.e425
Li J, Liang D, Qin S, Feng P, Wu X (2015) Effects of selenite and selenate application on growth and shoot selenium accumulation of pak choi (Brassica chinensis L.) during successive planting conditions. Environ Sci Pollut Res Int 22:11076-11086. doi:10.1007/s11356-015-4344-7 10.1007/s11356-015-4344-7
Li X, Wu Y, Li B, Yang Y, Yang Y (2018) Selenium accumulation characteristics and biofortification potentiality in turnip (Brassica rapa var. rapa) supplied with selenite or selenate. Front Plant Sci 8:2207. doi:10.3389/fpls.2017.02207 10.3389/fpls.2017.02207
Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73-80. doi:10.1007/s11104-008-9818-7 10.1007/s11104-008-9818-7
Mao H, Wang J, Wang Z, Zan Y, Lyons G, Zou C (2014) Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J Soil Sci Plant Nutr 14:459-470. doi:10.4067/S0718-95162014005000036 10.4067/S0718-95162014005000036
Medrano-Macías J, Leija-Martínez P, González-Morales S, Juárez-Maldonado A, Benavides-Mendoza A (2016) Use of iodine to biofortify and promote growth and stress tolerance in crops. Front Plant Sci 7:1146. doi:10.3389/fpls.2016.01146 10.3389/fpls.2016.0114627602033PMC4993787
Mimmo T, Tiziani R, Valentinuzzi F, Lucini L, Nicoletto C, Sambo P, Scampicchio M, Pii Y, Cesco S (2017) Selenium biofortification in fragaria × ananassa: implications on strawberry fruits quality, content of bioactive health beneficial compounds and metabolomic profile. Front Plant Sci 8:1887. doi:10.3389/fpls.2017.01887 10.3389/fpls.2017.01887
Mroczek-Zdyrska M, Strubińska J, Hanaka A (2017) Selenium improves physiological parameters and alleviates oxidative stress in shoots of lead-exposed Vicia faba L. minor plants grown under phosphorus-deficient conditions. J Plant Growth Regul 36:186-199. doi:10.1007/s00344-016-9629-7 10.1007/s00344-016-9629-7
Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon, M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267-274. doi:10.1016/j.pbi.2009.04.009 10.1016/j.pbi.2009.04.00919477676
Rajeshkumar S, Naik P (2018) Synthesis and biomedical applications of Cerium oxide nanoparticles-A Review. Biotechnol Rep 17:1-5. doi:10.1016/j.btre.2017.11.008 10.1016/j.btre.2017.11.008
Ramírez-Olvera SM, Trejo-Téllez LI, García-Morales S, Pérez-Sato JA, Gómez-Merino FC (2018) Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS ONE 13:e0194691. doi:10.1371/journal.pone.0194691 10.1371/journal.pone.019469129579100PMC5868810
Saldaña-Sánchez WD, León-Morales JM, López-Bibiano Y, Hernández-Hernández M, Langarica-Velázquez EC, García-Morales S (2019) Effect of V, Se, and Ce on growth, photosynthetic pigments, and total phenol content of tomato and pepper seedlings. J Soil Sci Plant Nutr 19:678-688. doi:10.1007/s42729-019-00068-1 10.1007/s42729-019-00068-1
Schiavon M, Pilon-Smits EAH, Citta A, Folda A, Rigobello MP, Vecchia FD (2016) Comparative effects of selenate and selenite on selenium accumulation, morphophysiology, and glutathione synthesis in Ulva australis. Environ Sci Pollut Res 23:15023-15032. doi:10.1007/s11356-016-6649-6 10.1007/s11356-016-6649-6
Shyam R, Aery NC (2012) Effect of cerium on growth, dry matter production, biochemical constituents and enzymatic activities of cowpea plants [Vigna unguiculata (L.) Walp.]. J Soil Sci Plant Nutr 12:1-14. doi:10.4067/S0718-95162012000100001 10.4067/S0718-95162012000100001
Siatka T, Kasparová M (2007) Effect of vanadium compounds on the growth and production of coumarins in the suspension culture of Angelica archangelica L. Ceska Slov Farm 56:230-234.
Smolen S, Rozek S, Ledwozyw-Smolen I, Strzetelski P (2011) Preliminary evaluation of the influence of soil fertilization and foliar nutrition with iodine on the efficiency of iodine biofortification and chemical composition of lettuce. J Elem 16:613-622. doi:10.5601/jelem.2011.16.4.10 10.5601/jelem.2011.16.4.10
Sotek Z, Białecka B, Pilarczyk B, Kruzhel B, Drozd R, Tomza-Marciniak A, Pilarczyk R, Lysak H, Bąkowska M, et al.(2018) The content of selenium, polyphenols and antioxidative activity in selected medicinal plants from Poland and Western Ukraine. Acta Pol Pharm Drug Res 75:1107-1116. doi:10.32383/appdr/82775 10.32383/appdr/82775
Strzetelski P, Smoleń S, Rozek S, Sady W (2010) The effect of diverse iodine fertilization on nitrate accumulation and content of selected compounds in radish plants (Raphanus sativus L.). Acta Sci Pol 9:65-73.
Thavarajah D, Thavarajah P, Vial E, Gebhardt M, Lacher C, Kumar S, Combs GF (2015) Will selenium increase lentil (Lens culinaris Medik) yield and seed quality? Front Plant Sci 6:356. doi:10.3389/fpls.2015.00356 10.3389/fpls.2015.00356
Zhu YG, Huang YZ, Hu Y, Liu YX (2003) Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environ Int 29:33-37. doi:10.1016/S0160-4120(02)00129-0 10.1016/S0160-4120(02)00129-0
Zicari MA, d'Aquino L, Paradiso A, Mastrolitti S, Tommasi F (2018) Effect of cerium on growth and antioxidant metabolism of Lemna minor L. Ecotoxicol Environ Saf 163:536-543. doi:10.1016/j.ecoenv.2018.07.113 10.1016/j.ecoenv.2018.07.113
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :4
  • Pages :413-423
  • Received Date :2021. 02. 08
  • Revised Date :2021. 03. 06
  • Accepted Date : 2021. 04. 21