All Issue

2024 Vol.42, Issue 1 Preview Page

Research Article

28 February 2024. pp. 39-52
Abstract
References
1
Chung SW, Jang YJ, Lim CK, Kim S, Kim SC (2023) Effects of 1-Naphthaleneacetic Acid on the Panicle and Fruit Characteristics of 'Irwin' Mango Trees. Hortic Sci Technol 41:361-369. doi:10.7235/HORT.20230033 10.7235/HORT.20230033
2
Das CS, Samal A, Awada T (2019) Leveraging Image Analysis for High-Throughput Plant Phenotyping. Front Plant Sci 10:508. doi:10.3389/fpls.2019.00508 10.3389/fpls.2019.0050831068958PMC6491831
3
de Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523-1532. doi:10.1093/jxb/erp094 10.1093/jxb/erp09419321650
4
Dhatt AS, Kaur G (2016) Parthenocarpy: A potential trait to exploit in vegetable crops: A review. Agric Rev 37:300-308. doi:10.18805/ag.v37i4.6460 10.18805/ag.v37i4.6460
5
Elassar G, Rudich J, Kedar N (1974) Parthenocarpic Fruit Development in Muskmelon Induced by Growth Regulators1. HortScience 9:579-580. doi:10.21273/HORTSCI.9.6.579 10.21273/HORTSCI.9.6.579
6
Fayaz Z, Nazir G, Masoodi UH, Afroza B, Wani AS, Rashid M (2021) Parthenocarpy: ''A Potential Trait to Exploit in Vegetable Crops''. Environ Ecol 39:1332-1346
7
Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: A Developmental Perspective. The Plant Cell 5:1439-1451. doi:10.1105/tpc.5.10.1439 10.1105/tpc.5.10.143912271039PMC160374
8
Goo HW, Kim EJ, Na HY, Park KS (2022) Effects of Heating Initiative Temperature and CO2 Fertilizing Concentration on the Growth and Yield of Summer Squash in a Greenhouse. J Bio-Environ Control 31:468-475. doi:10.12791/KSBEC.2022.31.4.468 10.12791/KSBEC.2022.31.4.468
9
Gustafson FG (1942) Parthenocarpy: Natural and artificial. Bot Rev 8:599-654. doi:10.1007/BF02881046 10.1007/BF02881046
10
Hayata Y, Niimi Y, Iwasaki N (1995) Synthetic Cytokinin-1-(2=chloro=4=pyridyl)-3-phenylurea (CPPU)-Promotes Fruit Set and Induces Parthenocarpy in Watermelon. J Am Soc Hortic Sci 120:997-1000. doi:10.21273/JASHS.120.6.997 10.21273/JASHS.120.6.997
11
Heo JY, Park KS, Yun HK, Park SM (2007) Degree of abortion and germination percentage in seeds derived from interploid crosses between diploid and tetraploid grape cultivars. Hortic Environ Biotechnol 48:115-121
12
Heo JY, Park SM (2016) Variation in Fruit Characteristics of 3x Progenies Obtained from a Cross between 4x and 2x Grape Cultivars. Korean J Hortic Sci Technol 34:761-770. doi:10.12972/kjhst.20160080 10.12972/kjhst.20160080
13
Hu C, Zhao H, Shi J, Li J, Nie X, Yang G (2019) Effects of 2,4-Dichlorophenoxyacetic Acid on Cucumber Fruit Development and Metabolism. Int J Mol Sci 20:1126. doi:10.3390/ijms20051126 10.3390/ijms2005112630841619PMC6429315
14
Igathinathane C, Pordesimo LO, Batchelor WD (2009) Major orthogonal dimensions measurement of food grains by machine vision using Image. J Food Res Int 42:76-84. doi:10.1016/j.foodres.2008.08.013 10.1016/j.foodres.2008.08.013
15
Joldersma D, Liu Z (2018) The making of virgin fruit: the molecular and genetic basis of parthenocarpy. J Exp Bot 69:955-962. doi:10.1093/jxb/erx446 10.1093/jxb/erx44629325151PMC6018997
16
Kalantari MR, Abdossi V, Mortazaeinezhad F, Golparvar AR, Shahshahan Z (2020) Foliar Application of Ethinyl Estradiol and Progesterone Affects Morphological and Fruit Quality Characteristics of Strawberry cv. Camarosa. Hortic Sci Technol 38:146-157. doi:10.7235/HORT.20200014 10.7235/HORT.20200014
17
Kaur S, Panghal A, Garg MK, Mann S, Khatkar SK, Sharma P, Chhikara N (2019) Functional and nutraceutical properties of pumpkin - a review. Nutr Food Sci 50:384-401. doi:10.1108/NFS-05-2019-0143 10.1108/NFS-05-2019-0143
18
Kim IS, Okubo H, Fujieda K (1992) Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hortic 52:1-8. doi:10.1016/0304-4238(92)90002-T 10.1016/0304-4238(92)90002-T
19
Kim T, Lim J, Jeong J, Seong M, Kim K, Jeon H, Noh J (2019) Production of Diploid Seedless Watermelon Using Tetraploid Watermelon Pollen. Korean J Hortic Sci Technol 37:520-527. doi:10.7235/HORT.20190052 10.7235/HORT.20190052
20
Knapp JL, Bartlett LJ, Osborne JL (2017) Re-evaluating strategies for pollinator-dependent crops: How useful is parthenocarpy? J Appl Ecol 54:1171-1179. doi:10.1111/1365-2664.12813 10.1111/1365-2664.1281328781379PMC5516152
21
Li J, Wu Z, Cui L, Zhang T, Guo Q, Xu J, Jia L, Lou Q, Huang S, et al. (2014) Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). Plant Cell Physiol 55:1325-1342. doi:10.1093/pcp/pcu051 10.1093/pcp/pcu05124733865
22
Makrogianni DI, Tsistraki A, Karapanos IC, Passam HC (2017) Nutritional value and antioxidant content of seed-containing and seedless eggplant fruits of two cultivars grown under protected cultivation during autumn-winter and spring-summer. J Sci Food Agric 97:3752-3760. doi:10.1002/jsfa.8238 10.1002/jsfa.823828134448
23
Marr CW, Gast KLB (1991) Reactions by Consumers in a Farmers' Market to Prices for Seedless Watermelon and Ratings of Eating Quality. HortTechnology 1:105-106. doi:10.21273/HORTTECH.1.1.105 10.21273/HORTTECH.1.1.105
24
Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M (2014) Sources of parthenocarpy for Zucchini breeding: relationship with ethylene production and sensitivity. Euphytica 200:349-362. doi:10.1007/s10681-014-1155-8 10.1007/s10681-014-1155-8
25
Ogawa M, Takisawa R (2022) Effect of Exogenous Plant Hormones on Parthenocarpy and Fruit Quality in Tropical Squash (Cucurbita moschata L.). Hort J 91:508-513. doi:10.2503/hortj.UTD-368 10.2503/hortj.UTD-368
26
Oh JY, Kim SM, Yoon JE, Jin YX, Cho YS, Choi Y (2014) Comparison of nutritional compositions of five pumpkin cultivars. Korean J Food Preserv 21:808-814. doi:10.11002/kjfp.2014.21.6.808 10.11002/kjfp.2014.21.6.808
27
Om Y, Hong K (1989) Evaluation of parthenocarpic fruit set in zucchini squash. Res Rpt Rural Dev Adm, Suwon, Republic of Korea, pp 30-33.
28
Ozga JA, Reinecke DM (2003) Hormonal Interactions in Fruit Development. J Plant Growth Regul 22:73-81. doi:10.1007/s00344-003-0024-9 10.1007/s00344-003-0024-9
29
Ozga JA, van Huizen R, Reinecke DM (2002) Hormone and seed-specific regulation of pea fruit growth. Plant Physiol 128:1379-1389. doi:10.1104/pp.010800 10.1104/pp.01080011950986PMC154265
30
Pandolfini T (2009) Seedless fruit production by hormonal regulation of fruit set. Nutrients 1:168-177. doi:10.3390/nu1020168 10.3390/nu102016822253976PMC3257607
31
Park K, Choi Ki, Kim EJ, Kim Sj, Ahn HG, Jeong SH (2021) Vision-Based Crop Trait Analysis System [Vision-Based Crop Trait Analysis System]. J-KICS 46:2419-2428. doi:10.7840/kics.2021.46.12.2419 10.7840/kics.2021.46.12.2419
32
Park SM (2011) Breeding of a Seedless Table Grape Cultivar 'Heukisul' (Vitis sp.) with High Quality. Korean J Hortic Sci Technol 29:507-509
33
Park SM (2021) Breeding of a New Golden Mini Sweet Pumpkin Cultivar (Hybrid)'K1'. J Agri Life Environ Sci 33:427-431. doi:10.22698/jales.20210042 10.22698/jales.20210042
34
Peres ALG, Soares JS, Tavares RG, Righetto G, Zullo MA, Mandava NB, Menossi M (2019) Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int J Mol Sci 20:331. doi:10.3390/ijms20020331 10.3390/ijms2002033130650539PMC6359644
35
Pomares-Viciana T, Die J, Del Rio-Celestino M, Roman B, Gomez P (2017) Auxin signalling regulation during induced and parthenocarpic fruit set in zucchini. Mol Breed 37:56. doi:10.1007/s11032-017-0661-5 10.1007/s11032-017-0661-5
36
Potts SG, Imperatriz-Fonseca V, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, et al. (2016) The assessment report on pollinators, pollination and food production: summary for policymakers. IPBES, Bonn, Germany, p 552
37
Qian C, Ren N, Wang J, Xu Q, Chen X, Qi X (2018) Effects of exogenous application of CPPU, NAA and GA(4+7) on parthenocarpy and fruit quality in cucumber (Cucumis sativus L.). Food Chem 243:410-413. doi:10.1016/j.foodchem.2017.09.150 10.1016/j.foodchem.2017.09.15029146357
38
Queiroga RCF, Silva GD, Pereira AM, Almeida RRP, Silva AB (2017) Yield and quality of the Tetsukabuto squash fruits induced with 2,4-D doses under dry conditions. Hortic Bras 35:271-277. doi:10.1590/s0102-053620170219 10.1590/s0102-053620170219
39
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S (2019) Tomato fruit development and metabolism. Front Plant Sci 10:1554. doi:10.3389/fpls.2019.01554 10.3389/fpls.2019.0155431850035PMC6895250
40
Rao PG, Prasad BVG, Kumar TK, Tirupathamma TL, Roshni P, Tejaswini T (2018) Breeding for Climate Resilient Parthenocarpic Vegetables. Int J Curr Microbiol Appl Sci 7:2473-2492. doi:10.20546/ijcmas.2018.711.282 10.20546/ijcmas.2018.711.282
41
Robinson RW, Reiners S (1999) Parthenocarpy in Summer Squash. HortScience 34:715-717. doi:10.21273/HORTSCI.34.4.715 10.21273/HORTSCI.34.4.715
42
Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656-665. doi:10.1016/j.tplants.2012.06.005 10.1016/j.tplants.2012.06.00522776090
43
Sharif R, Su L, Chen X, Qi X (2022) Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Hortic Res 9. doi:10.1093/hr/uhab024 10.1093/hr/uhab02435031797PMC8788353
44
Spena A, Rotino GL (2001) Parthenocarpy: state of the art. Current trends in the embryology of angiosperms, pp 435-450. doi:10.1007/978-94-017-1203-3_17 10.1007/978-94-017-1203-3_17
45
Subbaraya U, Rajendran S, Simeon S, Suthanthiram B, Marimuthu Somasundram S (2020) Unravelling the regulatory network of transcription factors in parthenocarpy. Sci Hortic 261. doi:10.1016/j.scienta.2019.108920 10.1016/j.scienta.2019.108920
46
Sun Z, Staub JE, Chung SM, Lower RL (2006) Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breeding 125:281-287. doi:10.1111/j.1439-0523.2006.01225.x 10.1111/j.1439-0523.2006.01225.x
47
Takisawa R, Kusaka H, Nishino Y, Miyashita M, Miyagawa H, Nakazaki T, Kitajima A (2019) Involvement of Indole-3-Acetic Acid Metabolism in the Early Fruit Development of the Parthenocarpic Tomato Cultivar, MPK-1. J Plant Growth Regul 38:189-198. doi:10.1007/s00344-018-9826-7 10.1007/s00344-018-9826-7
48
Takisawa R, Ogawa M, Maai E, Nishimura K, Nakano R, Nakazaki T (2021) Characterization of Parthenocarpic Fruit of 'Miyazaki-wase No. 1', a Tropical Squash (Cucurbita moschata L.) Cultivar. Hort J 90:68-74. doi:10.2503/hortj.UTD-219 10.2503/hortj.UTD-219
49
Varga A, Bruinsma J (1986) Tomato. In 'CRC Handbook of fruit set and development'.(Ed. SP Monselise) pp 461-480. In: CRC Press: Boca Raton, USA, pp 87-108
50
Yoshioka Y, Shimomura K, Sugiyama M (2017) Exploring an East Asian melon (Cucumis melo L.) collection for parthenocarpic ability. Genet Resour Crop Evol 65:91-101. doi:10.1007/s10722-017-0511-7 10.1007/s10722-017-0511-7
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 42
  • No :1
  • Pages :39-52
  • Received Date : 2023-06-28
  • Revised Date : 2023-10-24
  • Accepted Date : 2023-10-25