All Issue

2021 Vol.39, Issue 3 Preview Page

Research Article

30 June 2021. pp. 356-367
Anjum NA, Singh N, Singh M, Shah Z, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15:1-12. doi:10.1007/s11051-013-1770-7 10.1007/s11051-013-1770-7
Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L). Sci Total Environ 15:834-841. doi:10.1016/j.scitotenv.2013.11.018 10.1016/j.scitotenv.2013.11.01824342089
Boxriker M, Boehm R, Krezdorn N, Rotter B, Piepho HP (2017a) Comparative transcriptome analysis of vase life and carnation type in Dianthus caryophyllus L. Sci Hortic 217:61-72. doi:10.1016/j.scienta.2017.01.015 10.1016/j.scienta.2017.01.015
Boxrikera M, Boehm R, Möhring J, Piepho HP (2017b) Efficient statistical design in two-phase experiments on vase life in carnations (Dianthus caryophyllus L.) Postharvest Biology and Technology 128:161-168. doi:10.1016/j.postharvbio.2016.12.003 10.1016/j.postharvbio.2016.12.003
Brunner TI, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and effect of particle solubility. Environ Sci Technol 40:4374-4381. doi:10.1021/es052069i 10.1021/es052069i16903273
Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922-1931. doi:10.1897/08-117.1 10.1897/08-117.119086209
Chen Y, Hwang KC, Yen C, Lai Y (2004) Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol 287:R21-R26. doi:10.1152/ajpregu.00310.2003 10.1152/ajpregu.00310.200315191925
Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851-873. doi:10.3390/nano5020851 10.3390/nano502085128347040PMC5312920
Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582-589. doi:10.1016/j.tplants.2011.08.003 10.1016/j.tplants.2011.08.00321906987
Ebrahimzadeh A, Jiménez S, Teixeira da Silva JA, Satoh S, Lao MT (2008) Post-harvest physiology of cut carnation flowers. Fresh Prod J 2:56-71
Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21-25. doi:10.1007/BF00386001 10.1007/BF0038600124425174
Gao C, Feng P, Peng S, Shuai C (2017) Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomaterialia 61:1-20. doi:10.1016/j.actbio.2017.05.020 10.1016/j.actbio.2017.05.02028501710
Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183-191. doi:10.1038/nmat1849 10.1038/nmat184917330084
Ghuge AD, Shirode AR, Kadam VJ (2017) Graphene: A Comprehensive Review. Current Drug Targets 18:724-733. doi:10.2174/1389450117666160709023425 10.2174/138945011766616070902342527397067
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909-930. doi:10.1016/j.plaphy.2010.08.016 10.1016/j.plaphy.2010.08.01620870416
Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, et al. (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400-408. doi:10.1038/nmat3890 10.1038/nmat389024633343
He Y, Qian L, Liu X, Hu R, Huang M, Liu Y, Chen G, Losic D, Zhu H (2018) Graphene oxide as an antimicrobial agent can extend the vase life of cut flowers. Nano Res 11:6010-6022. doi:10.1007/s12274-018-2115-8 10.1007/s12274-018-2115-8
Heinen RB, Ye Q, Chaumont F (2009) Role of aquaporins in leaf physiology. J Exp Bot 11:2971-2985. doi:10.1093/jxb/erp171 10.1093/jxb/erp17119542196
Husenl A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16. doi:10.1186/1477-3155-12-16 10.1186/1477-3155-12-1624766786PMC4014205
Karimi M, Asil MH, Zakizadeh H (2012) Increasing plant longevity and associated metabolic events in potted carnation (Dianthus caryophyllus L. Clove Pink). Braz J Plant Physiol 24:247-252. doi:10.1590/S1677-04202012000400003 10.1590/S1677-04202012000400003
Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194-209. doi:10.1016/j.plaphy.2016.05.038 10.1016/j.plaphy.2016.05.03827269705
Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221-3227. doi:10.1021/nn900887m 10.1021/nn900887m19772305
Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108:1028-1033. doi:10.1073/pnas. 1008856108 10.1073/pnas
Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128-2135. doi:10.1021/nn204643g 10.1021/nn204643g22360840
Kim CW, Han N, Park H, Lee U (2020) Comparison of Postharvest Quality of Three Hardy Kiwifruit Cultivars during Shelf Life and Cold Storage. Hortic Sci Technol 38:229-238
Lahiani MH, Dervishi E, Chen J, Nima Z, Gaume A, Biris AS. Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965-7973. doi:10.1021/am402052x 10.1021/am402052x23834323
Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosensors and Bioelectronics 91:504-514. doi:10.1016/j.bios.2017.01.007 10.1016/j.bios.2017.01.00728082239
Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova A, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128-1132. doi:10.1002/smll.200801556 10.1002/smll.20080155619235197
Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267-1283. doi:10.1007/s00604-017-2179-2 10.1007/s00604-017-2179-2
Markovic Z, Trajkovic V (2008) Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29:3561-3573. doi:10.1016/j.biomaterials.2008.05.005 10.1016/j.biomaterials.2008.05.00518534675
Meyer AJ (2008) The integration of glutathione homeostasis and redox signaling. J Plant Physiol 165:1390-1403. doi:10.1016/j.jplph.2007.10.015 10.1016/j.jplph.2007.10.01518171593
Oh SI, Lee AK (2020) Comparison of Transport Methods and Wet Shipping Solutions for Cut Lily 'Woori Tower'. Hortic Sci Technol 38:87-96
Panova GG, Kanash EV, Semenov KN, Charykov NA, Khomyakov YV, Anikina LM, Artemeva AM, Kornyukhin DL, Vertebnyi VE, et al. (2018) Fullerene derivatives influence production process, growth and resistance to oxidative stress in barley and wheat plants. Agric Biol 53:38-49. doi:10.15389/agrobiology.2018.1.38eng 10.15389/agrobiology.2018.1.38eng
Prochazkova D, Wilhelmova N (2007) Leaf senescence and activities of the antioxidant enzymes. Biol Plant 51:401-406. doi:10.1007/s10535-007-0088-7 10.1007/s10535-007-0088-7
Rikabad MM, Pourakbar L, Moghaddam SS, Popović-Djordjević J (2019) Agrobiological, chemical and antioxidant properties of saffron (Crocus sativus L.) exposed to TiO2 nanoparticles and ultraviolet-B stress. Ind Crops Prod 137:137-143. doi:10.1016/j.indcrop.2019.05.017 10.1016/j.indcrop.2019.05.017
Rosa G, García-Castaneda C, Vazquez-Núnez E, Alonso-Castro AJ, Basurto-Islas G, Mendoza A, Cruz-Jimenez G, Molina C (2017) Physiological and biochemical response of plants to engineered NMs: Implications on future design. Plant Physiol Biochem 110:226-235. doi:10.1016/j.plaphy.2016.06.014 10.1016/j.plaphy.2016.06.01427328789
Smirnova E, Gusev A, Zaytseva O, Sheina O, Tkachev A, Kuznetsova E, Lazareva E, Onishchenko G, Feofanov A (2012) Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Front Chem Sci Eng 6:132-138. doi:10.1007/s11705-012-1290-5 10.1007/s11705-012-1290-5
Song L, Liu H, You Y, Wang Y, Jiang Y (2008) Effect of exogenous adenosine triphosphate supply on the senescence-related physiology of cut carnation flowers. HortScience 43:271-273. doi:10.21273/HORTSCI.43.1.271 10.21273/HORTSCI.43.1.271
Tanoua G, Molassiotis A, Diamantidis G (2009) Hydrogen peroxide and nitric oxide-induced systemic antioxidant prime-like activity under NaCl-stress and stress-free conditions in citrus plants. J Plant Physiol 166:1904-1913. doi:10.1016/j.jplph.2009.06.012 10.1016/j.jplph.2009.06.01219631407
Tassoni A, Accettulli P. Bagni N (2006) Exogenous spermidine delays senescence of Dianthus caryophyllus flowers. Plant Biosystems 140:107-114. doi:10.1080/11263500500520281 10.1080/11263500500520281
Tatone C, Emidio GD, Ventol M, Ciriminna R, Artini PG (2010) Cryopreservation and oxidative stress in reproductive cells. Gynecol Endocrinol 26:563-567. doi:10.3109/09513591003686395 10.3109/0951359100368639520230330
Van Breusegem F, Vranová E, Dat JF, Inzé D (2001) The role of active oxygen species in plant signal transduction. Plant Sci 161:405-414. doi:10.1016/S0168-9452(01)00452-6 10.1016/S0168-9452(01)00452-6
van Doorn WG, Han SS (2011) Postharvest quality of cut lily flowers. Postharvest Biol Technol 62:1-6. doi:10.1016/j.postharvbio.2011.04.013 10.1016/j.postharvbio.2011.04.013
Wang C, Liu H, Chen J, Tian Y, Shi J, Li D, Guo C, Ma Q (2014) Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L) seedlings under combined stress of lead and cadmium. J Hazard Mater 274:404-412. doi:10.1016/j.jhazmat.2014.04.036 10.1016/j.jhazmat.2014.04.03624806869
Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influences of nanoanatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179-190. doi:10.1385/BTER:110:2:179 10.1385/BTER:110:2:179
Yang Z, Sheng J, Lv K, Ren L, Zhang D (2019) Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants. Plant Sci 284:143-160. doi:10.1016/j.plantsci.2019.03.012 10.1016/j.plantsci.2019.03.01231084867
Zhang D, Ren L, Chen G, Zhang J, Reed BM, Shen X (2015) ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep 34:1499-1513. doi:10.1007/s00299-015-1802-0 10.1007/s00299-015-1802-026104871
Zuverza-Mena N, Martínez-Fernandez D, Du W, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komarek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses-A review. Plant Physiol Biochem 110:236-264. doi:10.1016/j.plaphy.2016.05.037 10.1016/j.plaphy.2016.05.03727289187
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :3
  • Pages :356-367
  • Received Date :2020. 07. 28
  • Revised Date :2021. 01. 07
  • Accepted Date : 2021. 01. 26