All Issue

2021 Vol.39, Issue 6 Preview Page

Research Article

31 December 2021. pp. 795-806
Ahanger MA, Qin C, Mao DQ, Dong XX, Ahmad P, Abd-Allah EF, Zhang L (2019) Spermine application alleviates salinity induced growth and photosynthetic inhibition in Solanum lycopersicum by modulating osmolyte and secondary metabolite accumulation and differentially regulating antioxidant metabolism. Plant Physiol Biochem 144:1-3. doi:10.1016/j.plaphy.2019.09.021 10.1016/j.plaphy.2019.09.02131542655
Aroca R, Porcel R, Ruizlozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63:43-57. doi:10.1093/jxb/err266 10.1093/jxb/err26621914658
Banerjee S, Ghosh S, Mandal A, Ghosh N, Sil PC (2020) ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. Arch Toxicol 94:2293-2317. doi:10.1007/s00204-020-02801-7 10.1007/s00204-020-02801-732524152
Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565-570. doi:10.1046/j.1365-313x.1999.00474.x 10.1046/j.1365-313X.1999.00474.x10417707
Boursiac Y, Chen S, Luu DT, Sorieul M, Van D, Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790-805. doi:10.1104/pp.105.065029 10.1104/pp.105.06502916183846PMC1255996
Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:1-13. doi:10.3389/fenvs.2014.00053 10.3389/fenvs.2014.00053
Flexas J, Ribas-Carbo M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2in vivo. Plant J 48:427-439. doi:10.1111/j.1365-313X.2006.02879.x 10.1111/j.1365-313X.2006.02879.x17010114
Gattolin S, Sorieul M, Frigerio L (2011) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4:180-189. doi:10.1093/mp/ssq051 10.1093/mp/ssq05120833734
Gong B, Wen D, Bloszies S, Li X, Wei M, Yang F, Shi Q, Wang X (2014) Comparative effects of NaCl and NaHCO3 stresses on respiratory metabolism, antioxidant system, nutritional status, and organic acid metabolism in tomato roots. Acta Physiol Plant 36:2167-2181. doi:10.1007/s11738-014-1593-x 10.1007/s11738-014-1593-x
Hachez C, Veselov D, Ye Q, Reinhardt H, Kniofer T, Fricke W, Chaumont F (2012) Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ 35:185-198. doi:10.1111/j.1365-3040.2011.02429.x 10.1111/j.1365-3040.2011.02429.x21950760
Han W, Jia J, Hu Y, Liu J, Guo J, Shi Y, Huo H, Gong H (2020a) Maintenance of root water uptake contributes to salt-tolerance of a wild tomato species under salt stress. Arch Agron Soil Sci 67:205-217. doi:10.1080/03650340.2020.1720911 10.1080/03650340.2020.1720911
Han N, Fan S, Zhang T, Sun H, Zhu Y, Gong H, Guo J (2020b) SlHY5 is a necessary regulator of the cold acclimation response in tomato. Plant Growth Regul 91:1-12. doi:10.1007/s10725-020-00583-7 10.1007/s10725-020-00583-7
Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521-529. doi:10.1093/pcp/pch070 10.1093/pcp/pch07015169933
Jang JY, Kim DG, Kim YO, Kim JS, Kang HS (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713-725. doi:10.1023/B:PLAN.0000040900.61345.a6 10.1023/B:PLAN.0000040900.61345.a615356390
Jia J, Liang Y, Gou T, Hu Y, Zhu Y, Huo H, Guo J, Gong H (2020) The expression response of plasma membrane aquaporins to salt stress in tomato plants. Environ Exp Bot 178:104190. doi:10.1016/j.envexpbot.2020.104190 10.1016/j.envexpbot.2020.104190
Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res 51:4. doi:10.1186/s40659-018-0152-0 10.1186/s40659-018-0152-029338771PMC5769316
Kong WL, Bendahmane M, Fu XP (2018) Genome-wide Identification and characterization of aquaporins and their role in the flower opening processes in carnation (Dianthus caryophyllus). Molecules 23:1895. doi:10.3390/molecules23081895 10.3390/molecules2308189530060619PMC6222698
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321-1358. doi:10.1152/physrev.00008.2015 10.1152/physrev.00008.201526336033
Maurel C, Verdoucq L, Rodrigues O (2016) Aquaporins and plant transpiration. Plant Cell Environ 39:2580-2587. doi:10.1111/pce.12814 10.1111/pce.1281427497047
Pawlowicz I, Masajada K (2019) Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 687:166-172. doi:10.1016/j.gene.2018.11.031 10.1016/j.gene.2018.11.03130445023
Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C (2016) Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. Plant Mol Biol 92:731-744. doi:10.1007/s11103-016-0542-z 10.1007/s11103-016-0542-z27671160
Przedpelska-Wasowicz EM, Wierzbicka M (2011) Gating of aquaporins by heavy metals in Alliumcepa L. epidermal cells. Protoplasma 248:663-671. doi:10.1007/s00709-010-0222-9 10.1007/s00709-010-0222-920960016PMC3206186
Puyang X, An M, Han L, Zhang X (2015) Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf 117:96-106. doi:10.1016/j.ecoenv.2015.03.023 10.1016/j.ecoenv.2015.03.02325841065
Qian ZJ, Song JJ, Chaumont F, Ye Q (2015) Differential responses of plasma membrane aquaporins in mediating water transport of cucumber seedlings under osmotic and salt stresses. Plant Cell Environ 38:461-473. doi:10.1111/pce.12319 10.1111/pce.1231924601940
Reinhardt H, Hachez C, Bienert MD, Beebo A, Swarup K, Vob U, Bouhide K, Frigerio L, Schjoerring JK, et al (2016) Tonoplast aquaporins facilitate lateral root emergence. Plant Physiol 170:1640-1654. doi:10.1104/pp.15.01635 10.1104/pp.15.0163526802038PMC4775129
Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE 8:e79052. doi:10.1371/journal.pone.0079052 10.1371/journal.pone.007905224260152PMC3834038
Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245-254. doi:10.1104/pp.109.145854 10.1104/pp.109.14585419939947PMC2799360
Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2;2 a key to isohydric and anisohydric conversion? New Phytol 181:651-661. doi:10.1111/j.1469-8137.2008.02689.x 10.1111/j.1469-8137.2008.02689.x19054338
Sánchez-Romera B, Ruiz-Lozano JM, Li G, Luu DT, Martínez-Ballesta MC, Carvajal M, Zamarreño AM, García-Mina JM, Maurel C, et al (2014) Enhancement of root hydraulic conductivity by methyl jasmonate and the role of calcium and abscisic acid in this process. Plant Cell Environ 37:995-1008. doi:10.1111/pce.12214 10.1111/pce.1221424131347
Scoffoni C, McKown AD, Rawls M, Sack L (2012) Dynamics of leaf hydraulic conductance with water status: quantification and analysis of species differences under steady state. J Exp Bot 63:643-658. doi:10.1093/jxb/err270 10.1093/jxb/err27022016424PMC3254676
Shi Y, Zhang Y, Yao H, Wu J, Sun H, Gong H (2014) Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress. Plant Physiol Biochem 78:27-36. doi:10.1016/j.plaphy.2014.02.009 10.1016/j.plaphy.2014.02.00924607576
Verdoucq L, Maurel C (2018) Advances in botanical research. membrane transport in plants. 87. Elsevier Academic Press, pp 26-56. doi:10.1016/S0065-2296(18)30072-7 10.1016/S0065-2296(18)30072-7
Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581-590. doi:10.1046/j.1365-313x.2001.01105.x 10.1046/j.1365-313X.2001.01105.x11576441
Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657. doi:10.3389/fpls.2016.00657 10.3389/fpls.2016.00657
Zhu Y, Jiang X, Zhang J, He Y, Zhu X, Zhou X, Gong H, Yin J, Liu Y (2020) Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol Biochem 156:209-220. doi:10.1016/j.plaphy.2020.09.014 10.1016/j.plaphy.2020.09.01432977177
Zhu YX, Xu XB, Hu YH, Han WH, Yin JL, Li HL, Gong HJ (2015) Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Rep 34:1629-1646. doi:10.1007/s00299-015-1814-9 10.1007/s00299-015-1814-926021845
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :6
  • Pages :795-806
  • Received Date :2021. 04. 21
  • Revised Date :2021. 06. 21
  • Accepted Date : 2021. 09. 13