All Issue

2020 Vol.38, Issue 4 Preview Page

Research Article

31 August 2020. pp. 462-473
Abstract
References
1
Abadía J, Morales F, Abadía A (1999) Photosystem II efficiency in low chlorophyll, iron-deficient leaves. Plant Soil 215:183-192. doi:10.1023/A:1004451728237
10.1023/A:1004451728237
2
Arena C, Tsonev T, Doneva D, Micco VD, Michelozzi M, Brunetti C, Centritto M, Fineschi S, Velikova V, et al. (2016) The effect of light quality on growth, photosynthesis, leaf anatomy and volatile isoprenoids of a monoterpene-emitting herbaceous species (Solanum lycopersicum L.) and an isoprene-emitting tree (Platanus orientalis L.). Environ Exp Bot 130:122-132. doi:10.1016/j.envexpbot.2016.05.014
10.1016/j.envexpbot.2016.05.014
3
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54. doi:10.1016/0003-2697(76)90527-3
10.1016/0003-2697(76)90527-3
4
Cao X, Bi X, Huang W, Wu J, Hu X, Liao X (2012) Changes of quality of high hydrostatic pressure processed cloudy and clear strawberry juices during storage. Innov Food Sci Emerg 16:181-190. doi:10.1016/j.ifset.2012.05.008
10.1016/j.ifset.2012.05.008
5
Casal JJ, Alvarez MA (1988) Blue light effects on the growth of Lolium multiflorum Lam leaves under natural radiation. New Phytol 109:41-45. doi:10.1111/j.1469-8137.1988.tb00216.x
10.1111/j.1469-8137.1988.tb00216.x
6
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, Horst GTJ, Batschauer A, et al. (2011) The Cryptochromes: Blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335-364. doi:10.1146/annurev-arplant-042110-103759
10.1146/annurev-arplant-042110-10375921526969
7
Cheng GW, Breen PJ (1991) Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J Am Soc Hortic Sci 116:865-869. doi:10.21273/JASHS.116.5.865
10.21273/JASHS.116.5.865
8
Cheng J, Wei L, Wu J (2015) Effect of light quality selective plastic films on anthocyanin biosynthesis in Vitis vinifera L. cv. Yatomi Rosa. J Agric Sci Technol 17:157-166
9
Cheng J, Ye X, Chen J, Liu D, Zhou S (2008) Nutritional composition of underutilized bayberry (Myrica rubra Sieb. et Zucc.) kernels. Food Chem 107:1674-1680. doi:10.1016/j.foodchem.2007.09.042
10.1016/j.foodchem.2007.09.042
10
Choi HG, Moon BY, Kang NJ (2015) Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci Hortic 189:22-31. doi:10.1016/j.scienta.2015.03.022
10.1016/j.scienta.2015.03.022
11
Duarte LJ, Chaves VC, Nascimento M, Calvete E, Li M, Ciraolo E, Ghigo A, Hirsch E, Simoes C, et al. (2018) Molecular mechanism of action of pelargonidin-3-O- glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chem 247:56-65. doi:10.1016/j.foodchem.2017.12.015
10.1016/j.foodchem.2017.12.01529277228
12
El-Khawas S, Khatab H (2007) Comparative studies on the effects of different light qualities on Vigna sinensis L. and Phaseolus vulgaris L. seedlings. Res J Agric Biol Sci 58:790-799
13
Eskins K, Jiang CZ, Shibles R (1991) Light-quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- and light- harvesting-deficient soybean mutant. Physiol Plant 83:47-53. doi:10.1111/j.1399-3054.1991.tb01280.x
10.1111/j.1399-3054.1991.tb01280.x
14
Fan X, Xu Z, Liu X, Tang C, Wang L, Han X (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50-55. doi:10.1016/j.scienta.2013.01.017
10.1016/j.scienta.2013.01.017
15
Fankhauser C, Ulm R (2011) Light-regulated interactions with SPA proteins underlie cryptochrome-mediated gene expression. Gene Dev 25:1004-1009. doi:10.1101/gad.2053911
10.1101/gad.205391121576261PMC3093115
16
Fu X, Cheng S, Zhang Y, Du B, Feng C, Zhou Y, Mei X, Jiang Y, Duan X, et al. (2017) Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Fragaria ×ananassa Duch.) under interaction of light and temperature. Food Chem 221:356-364. doi:10.1016/j.foodchem.2016.10.082
10.1016/j.foodchem.2016.10.08227979214
17
Gao P, Zuo Z, Zhang R, Qiu Y, He R, Gao R, Gui R (2016) Optimum nitrogen fertilization for productivity and photosynthetic response. Agron J 108:448-458. doi:10.2134/agronj2015.0324
10.2134/agronj2015.0324
18
Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211-220. doi:10.1007/s11816-013-0277-0
10.1007/s11816-013-0277-0
19
Haripal PK, Raval HK, Raval MK, Rawal RM, Biswal B, Biswal UC (2006) Three-dimensional model of zeaxanthin binding PsbS protein associated with nonphotochemical quenching of excess quanta of light energy absorbed by the photosynthetic apparatus. J Mol Model 12:847-853. doi:10.1007/s00894-006-0103-5
10.1007/s00894-006-0103-516538483
20
Hisamatsu T, Sumimoto K, Shimizu H (2008) End-of-day far-red treatment enhances responsiveness to giberellins and promotes stem extension in chrysanthemum. J Hortic Sci Biotech 83:695-700. doi:10.1080/14620316.2008.11512446
10.1080/14620316.2008.11512446
21
Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Leperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107-3117. doi:10.1093/jxb/erq132
10.1093/jxb/erq13220504875PMC2892149
22
Hong Y, Yang L, Li M, Dai S (2016) Comparative analyses of light-induced anthocyanin accumulation and gene expression between the ray florets and leaves in chrysanthemum. Plant Physiol Biochem 103:120-132. doi:10.1016/j.plaphy.2016.03.006
10.1016/j.plaphy.2016.03.00626990403
23
Islam M, Tarkowská D, Clarke JL, Blystad DR, Gislerød HR, Torre S, Olsen JE (2014) Impact of end-of-day red and far-red light on plant morphology and hormone physiology of poinsettia. Sci Hortic 174:77-86. doi:10.1016/j.scienta.2014.05.013
10.1016/j.scienta.2014.05.013
24
Jeong SW, Hogewoning SW, van Ieperen W (2014) Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Sci Hortic 165:69-74. doi:10.1016/j.scienta.2013.11.006
10.1016/j.scienta.2013.11.006
25
Jing DW, Du ZY, Ma HL, Ma BY, Liu FC, Song YG, Xu YF, Li L (2017) Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Sci Hortic 225:1-5. doi:10.1016/j.scienta.2017.06.036
10.1016/j.scienta.2017.06.036
26
Johkan M, Shoji K, Goto F, Hashida S, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:414-415. doi:10.21273/HORTSCI.45.12.1809
10.21273/HORTSCI.45.12.1809
27
Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki KI (2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414:656-660. doi:10.1038/414656a
10.1038/414656a11740564
28
Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235-246. doi:10.1016/j.pbi.2004.03.014
10.1016/j.pbi.2004.03.01415134743
29
Kurilčik A, Miklušyte-Čanova R, Dapkūniene S, Žilinskaite S, Kurilčik G, Tamulaitis G, Duchovskis P, Žukauskas A (2008) In vitro culture of chrysanthemum plantlets using light-emitting diodes. Cent Eur J Biol 3:161-167. doi:10.2478/s11535-008-0006-9
10.2478/s11535-008-0006-9
30
Li H, Tang C, Xu Z (2013) The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Sci Hortic 150:117-124. doi:10.1016/j.scienta.2012.10.009
10.1016/j.scienta.2012.10.009
31
Li H, Xu Z, Tang C (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult 103:155-163. doi:10.1007/s11240-010-9763-z
10.1007/s11240-010-9763-z
32
Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59-64. doi:10.1016/j.envexpbot.2009.06.011
10.1016/j.envexpbot.2009.06.011
33
Li Y, Li H, Li Y, Zhang S (2017b) Improving water-use efficiency by decreasing stomatal conductance and transpiration rate to maintain higher ear photosynthetic rate in drought-resistant wheat. Crop J 5:231-239. doi:10.1016/j.cj.2017.01.001
10.1016/j.cj.2017.01.001
34
Li Y, Xin G, Wei M, Shi Q, Yang F, Wang X (2017a) Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci Hortic 225:490-497. doi:10.1016/j.scienta.2017.07.053
10.1016/j.scienta.2017.07.053
35
Lichtenthaler HK, Wellburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochem Soc Trans 11:591-592. doi:10.1042/bst0110591
10.1042/bst0110591
36
Markou G, Muylaert K (2016) Effect of light intensity on the degree of ammonia toxicity on PSII activity of Arthrospira platensis and Chlorella vulgaris. Bioresour Technol 216:453-461. doi:10.1016/j.biortech.2016.05.094
10.1016/j.biortech.2016.05.09427262720
37
Massa GD, Kim HH, Wheeler RM, Mitchell CA, Cary A (2008) Plant productivity in response to LED lighting. HortScience 43:1951-1956. doi:10.21273/HORTSCI.43.7.1951
10.21273/HORTSCI.43.7.1951
38
Mastropasqua L, Tanzarella P, Paciolla C (2016) Effects of postharvest light spectra on quality and health-related parameters in green Asparagus officinalis L. Postharvest Biol Technol 112:143-151. doi:10.1016/j.postharvbio.2015.10.010
10.1016/j.postharvbio.2015.10.010
39
Miao L, Zhang Y, Yang X, Xiao J, Zhang H, Zhang Z, Wang Y, Jiang G (2016) Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria ×ananassa) fruit. Food Chem 207:93-100. doi:10.1016/j.foodchem.2016.02.077
10.1016/j.foodchem.2016.02.07727080884
40
Moe R, Grimstad SO, Gislerod HR (2006) The use of artificial light in year round production of greenhouse crops in Norway. Acta Hortic 711:35-42. doi:10.17660/ActaHortic.2006.711.2
10.17660/ActaHortic.2006.711.2
41
Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach SB, Szalai G, Pál M, Toldi D, et al. (2018) LED lighting- modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front Plant Sci 9:605. doi:10.3389/fpls.2018.00605
10.3389/fpls.2018.0060529780400PMC5945875
42
Papageorgiou G (1975) On the mechanism of the PMS-affected quenching of chloroplast fluorescence. Arch Biochem Biophys 166:390-399. doi:10.1016/0003-9861(75)90402-6
10.1016/0003-9861(75)90402-6
43
Park IS, Cho KJ, Kim J, Cho JY, Lim TJ, Oh W (2016) Growth and flowering responses of petunia to artificial light resources with different light quality. Korean J Hortic Sci Technol 34:55-66. doi:10.12972/kjhst.20160016
10.12972/kjhst.20160016
44
Poudel PR, Kataoka I, Mochioka R (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult 92:147-153. doi:10.1007/s11240-007-9317-1
10.1007/s11240-007-9317-1
45
Ramírez-Mosqueda MA, Iglesias-Andreu LG, Luna-Sánchez IJ (2017) Light quality affects growth and development of in vitro, plantlet of Vanilla planifolia Jacks. S Afr J Bot 109:288-293. doi:10.1016/j.sajb.2017.01.205
10.1016/j.sajb.2017.01.205
46
Samuolienė G, Sirtautas R, Brazaitytė A, Duchovskis P (2012) LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem 134:1494-1499. doi:10.1016/j.foodchem.2012.03.061
10.1016/j.foodchem.2012.03.06125005972
47
Senger H (1982) The effect of blue light on plants and microorganisms. Photochem Photobiol 35:911-920. doi:10.1111/j.1751-1097.1982.tb0266
10.1111/j.1751-1097.1982.tb02668.x
48
Stone BB, Esmon CA, Liscum E (2005) Phototropins, other photoreceptors, and associated signaling: the lead and supporting cast in the control of plant movement responses. Curr Top Dev Biol 66:215-238. doi:10.1016/S0070-2153(05)66007-3
10.1016/S0070-2153(05)66007-3
49
Strasser RJ, Srivastava A (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol 61:32-42. doi:10.1111/j.1751-1097.1995.tb09240.x
10.1111/j.1751-1097.1995.tb09240.x
50
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In GC Papageorgiou, Govindjee (eds), Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration, vol 19. Springer, Dordrecht, the Netherlands, pp 321-362. doi:10.1007/978-1-4020-3218-9_12
10.1007/978-1-4020-3218-9_12
51
Strauss AJ, Krüger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56:147-157. doi:10.1016/j.envexpbot.2005.01.011
10.1016/j.envexpbot.2005.01.011
52
Thakur JK, Jain M, Tyagi AK, Khurana JP (2005) Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsiIAA1, an Aux/IAA protein from rice, via proteasome. BBA - Gene Struct Exp 1730:196-205. doi:10.1016/j.bbaexp.2005.08.002
10.1016/j.bbaexp.2005.08.00216139905
53
Trouwborst G, Hogewoning SW, van Kooten O, Harbinson J, van Ieperen W (2016) Plasticity of photosynthesis after the 'red light syndrome' in cucumber. Environ Exp Bot 121:75-82. doi:10.1016/j.envexpbot.2015.05.002
10.1016/j.envexpbot.2015.05.002
54
Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photoch Photobio B 96:30-37. doi:10.1016/j.jphotobiol.2009.03.010
10.1016/j.jphotobiol.2009.03.01019410482
55
Wu Q, Su N, Shen W, Cui J (2014) Analyzing photosynthetic activity and growth of Solanum lycopersicum seedlings exposed to different light qualities. Acta Physiol Plant 36:1411-1420. doi:10.1007/s11738-014-1519-7
10.1007/s11738-014-1519-7
56
Xu F, Shi L, Chen W, Cao S, Su X, Yang Z (2014) Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci Hortic 175:181-186. doi:10.1016/j.scienta.2014.06.012
10.1016/j.scienta.2014.06.012
57
Xu Q, Yang L, Yang W, Bai Y, Hou P, Zhao J, Zhou L, Zuo Z (2017) Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Ecotox Environ Saf 135:191-200. doi:10.1016/j.ecoenv.2016.09.027
10.1016/j.ecoenv.2016.09.02727741460
58
Yeh N, Chung JP (2009) High-brightness LEDs-Energy efficient lighting sources and their potential in indoor plant cultivation. Renew Sust Energ Rev 13:2175-2180. doi:10.1016/j.rser.2009.01.027
10.1016/j.rser.2009.01.027
59
Yu H, Ong BL (2003) Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings. Photosynthetica 41:349-355. doi:10.1023/B:PHOT.0000015458.11643.b2
10.1023/B:PHOT.0000015458.11643.b2
60
Zhao J, Yang L, Zhou L, Bai Y, Wang B, Hou P, Xu Q, Yang W, Zuo Z (2016) Inhibitory effects of eucalyptol and limonene on the photosynthetic abilities in Chlorella vulgaris (Chlorophyceae). Phycologia 55:696-702. doi:10.2216/16-38.1
10.2216/16-38.1
61
Zheng J, Hu M, Guo Y (2008) Regulation of photosynthesis by light quality and its mechanism in plant. J Appl Ecol 19:1619-1624
62
Zuo Z, Wang B, Ying B, Zhou L, Zhang R (2017) Monoterpene emissions contribute to thermotolerance in Cinnamomum camphora. Trees 31:1759-1771. doi:10.1007/s00468-017-1582-y
10.1007/s00468-017-1582-y
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :4
  • Pages :462-473
  • Received Date : 2019-10-30
  • Revised Date : 2020-01-26
  • Accepted Date : 2020-04-02