All Issue

2024 Vol.42, Issue 1 Preview Page

Research Article

28 February 2024. pp. 80-93
Abstract
References
1
Bae SM, Park JS, Ju CY, Lee DH (2022) Selective face de-identification scheme using multiple face recognition and classification techniques. IV International Conference on Advances in Computer Technology 2022, Inf Sci Commun (CTISC): IEEE, Suzhou, China, pp 1-8. doi:10.1109/CTISC54888.2022.9849764 10.1109/CTISC54888.2022.9849764
2
Baek Y, Sul S, Cho YY (2023) Estimation of days after transplanting using an artificial intelligence CNN (Convolutional Neural Network) model in a closed-type plant factory. Hortic Sci Technol 41:81-90. doi:10.7235/HORT.20230008 10.7235/HORT.20230008
3
Bang JH, Park J, Park SW, Kim JY, Jung SH, Sim CB (2022) A system for determining the growth stage of fruit tree using a deep learning-based object detection model. Smart Mdeia J 11:9-18. doi:10.30693/SMJ.2022.11.4.9 10.30693/SMJ.2022.11.4.9
4
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: fast and flexible image augmentations. Information 11:125. doi:10.3390/info11020125 10.3390/info11020125
5
Dosovitskiy A, Beyer A, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer M, Heigold G, et al. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. Cornell University, New York, USA. doi:10.48550/arXiv.2010.11929 10.48550/arXiv.2010.11929
6
Jung, DH, Cho, YY (2022) A prediction model for Hallabong tangor product prices using LSTM (Long Short-term Memory) network. Hortic Sci Technol 40:571-577. doi:10.7235/HORT.20220051 10.7235/HORT.20220051
7
Kim I, Lee MG, Jeon Y (2021) Comparative analysis of defect detection using YOLO of deep learning. J KSMTE 30:514-519. doi:10.7735/ksmte.2021.30.6.513 10.7735/ksmte.2021.30.6.513
8
Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60:84-90. doi:10.1145/3065386 10.1145/3065386
9
LeCun Y, Boser B, Denker JS, Henderson D, Howard RE, Hubbard W, Jackel LD (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1:541-551. doi:10.1162/neco.1989.1.4.541 10.1162/neco.1989.1.4.541
10
Lee HJ, Lee WS, Choi IH, Lee CK (2020) Detection model of fruit epidermal defects using YOLOv3: A case of peach. Information System Review 22:113-124. doi:10.14329/isr.2020.22.1.113 10.14329/isr.2020.22.1.113
11
Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: Hierarchical vision transformer using shifted windows. IEEE/CVF International Conference on Computer Vision 2021, pp 10012-10022. doi:10.1109/ICCV48922.2021.00986 10.1109/ICCV48922.2021.0098634576156PMC8471952
12
Loshchilov I, Hutter F (2017) Decoupled weight decay regularization. arXiv preprint. doi:10.48550/arXiv.1711.05101 10.48550/arXiv.1711.05101
13
Nam DS, Moon T, Lee JW, Son JE (2019) Estimating transpiration rates of hydroponically-grown paprika via an artificial neural network using aerial and root-zone environments and growth factors in greenhouses. Hortic Environ Biotechnol 60:913-923. doi:10.1007/s13580-019-00183-z 10.1007/s13580-019-00183-z
14
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, et al. (2019) Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process Syst, Vol 32. doi:10.48550/arXiv.1912.01703 10.48550/arXiv.1912.01703
15
Reza AM (2004) Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol 38:35-44. doi:10.1023/B:VLSI.0000028532.53893.82 10.1023/B:VLSI.0000028532.53893.82
16
Seo D, Kim KC, Lee M, Kwon KD, Kim G (2021) Research on tomato flowers and fruits object detection model in greenhouse environment using deep learning J Korean Inst Commu Infor Sci 46:2072-2077. doi:10.7840/kics.2021.46.11.2072 10.7840/kics.2021.46.11.2072
17
Shaha M, Pawar M (2018) Transfer learning for image classification. II International Conference on Electronics 2018, Commun. Aerosp. Technol (ICECA), 2018: IEEE, pp 656-660. doi:10.1109/ICECA.2018.8474802 10.1109/ICECA.2018.8474802
18
Shin MH, Jang KE, Lee SK, Cho JG, Song SJ, Kim JG (2022) Grading of harvested 'Mihwang' peach maturity with convolutional neural network. J Bio-Envir Con 31:270-278. doi:10.12791/KSBEC.2022.31.4.270 10.12791/KSBEC.2022.31.4.270
19
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Cornell University, New York, USA. arXiv:1409.1556. doi:10.48550/arXiv.1409.1556 10.48550/arXiv.1409.1556
20
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition, MA, USA, pp 1-9. doi:10.1109/CVPR.2015.7298594 10.1109/CVPR.2015.7298594
21
Tan M, Le Q (2019) EfficientNet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning. PMLR, California, USA, pp 6105-6114. doi:10.48550/arXiv.1905.11946 10.48550/arXiv.1905.11946
22
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in Neural Information Processing Systems 30, California, USA, doi:10.48550/arXiv.1706.03762 10.48550/arXiv.1706.03762
23
Wang CY, Liao HYM, Wu YH, Chen PY, Hsieh JW, Yeh IH (2020) CSPNet: A new backbone that can enhance learning capability of CNN. IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, WA, USA, pp 390-391. doi:10.1109/CVPRW50498.2020.00203 10.1109/CVPRW50498.2020.00203
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :한국원예학회
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 42
  • No :1
  • Pages :80-93
  • Received Date : 2023-03-30
  • Revised Date : 2023-05-10
  • Accepted Date : 2023-06-21