All Issue

2020 Vol.38, Issue 2 Preview Page

Research Article

30 April 2020. pp. 187-200
Abstract
References
1
Benni S, Tassinari P, Bonora F, Barbaresi A, Torreggiani D (2016) Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build 125:276-286. doi:10.1016/j.enbuild.2016.05.014
10.1016/j.enbuild.2016.05.014
2
Betiku E, Taiwo AE (2015) Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-à-vis response surface methodology and artificial neural network. Renew Energy 74:87-94. doi:10.1016/j.renene.2014.07.054
10.1016/j.renene.2014.07.054
3
Blasco X, Martínez M, Herrero JM, Ramos C, Sanchis J (2007) Model-based predictive control of greenhouse climate for reducing energy and water consumption. Comput Electron Agric 55:49-70. doi:10.1016/j.compag.2006.12.001
10.1016/j.compag.2006.12.001
4
Castañeda-Miranda A, Castaño VM (2017) Smart frost control in greenhouses by neural networks models. Comput Electron Agric 137:102-114. doi:10.1016/j.compag.2017.03.024
10.1016/j.compag.2017.03.024
5
Demirtas M, Karaoglan AD (2012) Optimization of PI parameters for DSP-based permanent magnet brushless motor drive using response surface methodology. Energy Convers Manag 56:104-111. doi:10.1016/j.enconman.2011.11.021
10.1016/j.enconman.2011.11.021
6
Fitz-Rodríguez E, Kubota C, Giacomelli GA, Tignor ME, Wilson SB, McMahon M (2010) Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Comput Electron Agric 70:105-116. doi:10.1016/j.compag.2009.09.010
10.1016/j.compag.2009.09.010
7
Hong S-W, Lee I-B (2014) Predictive model of micro-environment in a naturally ventilated greenhouse for a model-based control approach. Prot Hortic Plant Fac 23:181-191. doi:10.12791/KSBEC.2014.23.3.181
10.12791/KSBEC.2014.23.3.181
8
Kaushal M, Dhiman P, Singh S, Patel H (2015) Finite volume and response surface methodology based performance prediction and optimization of a hybrid earth to air tunnel heat exchanger. Energy Build 104:25-35. doi:10.1016/j.enbuild.2015.07.014
10.1016/j.enbuild.2015.07.014
9
Kim SE, Lee MY, Lee MH, Sim SY, Kim YS (2014) Optimal management of tomato leaf pruning in rockwool culture. Hortic Environ Biotechnol 55:445-454. doi:10.1007/s13580-014-0049-y
10.1007/s13580-014-0049-y
10
Kwon JK, Kang GC, Lee SH, Sung JH, Yun NK, Moon JP, Lee SJ (2013) Development of on-site heat loss audit and energy consulting system for greenhouse. J Biosyst Eng 38:287-294. doi:10.5307/JBE.2013.38.4.287
10.5307/JBE.2013.38.4.287
11
Lee RJ, Bhandari SR, Lee G, Lee JG (2019) Optimization of temperature and light, and cultivar selection for the production of high-quality head lettuce in a closed-type plant factory. Hortic Environ Biotechnol 60:207-216. doi:10.1007/s13580-018-0118-8
10.1007/s13580-018-0118-8
12
Li L, Li J, Wang H, Georgieva T, Ferentinos K, Arvanitis K, Sygrimis N (2018) Sustainable energy management of solar greenhouses using open weather data on MACQU platform. Int J Agric Biol Eng 11:74-82. doi:10.25165/j.ijabe.20181101.2713
10.25165/j.ijabe.20181101.2713
13
Majdi H, Esfahani JA, Mohebbi M (2019) Optimization of convective drying by response surface methodology. Comput Electron Agric 156:574-584. doi:10.1016/j.compag.2018.12.021
10.1016/j.compag.2018.12.021
14
Montoya A, Guzmán JL, Rodríguez F, Sánchez-Molina JA (2016) A hybrid-controlled approach for maintaining nocturnal greenhouse temperature: Simulation study Comput Electron Agric 123:116-124. doi:10.1016/j.compag.2016.02.014
10.1016/j.compag.2016.02.014
15
Nakano E, Jutan A (1994) Application of response surface methodology in controller fine-tuning. ISA Trans 33:353-366. doi:10.1016/0019-0578(94)90017-5
10.1016/0019-0578(94)90017-5
16
Norton T, Sun DW, Grant J, Fallon R, Dodd V (2007) Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review. Bioresour Technol 98:2386-2414. doi:10.1016/j.biortech.2006.11.025
10.1016/j.biortech.2006.11.02517207996
17
Pahuja R, Verma HK, Uddin M (2015) Implementation of greenhouse climate control simulator based on dynamic model and vapor pressure deficit controller. Eng Agric Environ Food 8:273-288. doi:10.1016/j.eaef.2015.04.009
10.1016/j.eaef.2015.04.009
18
Park B-S, Kang T-H, Han C-S (2015) Analysis of heating characteristics using aluminum multi-layer curtain for protected horticulture greenhouses. J Biosyst Eng 40:193-200. doi:10.5307/JBE.2015.40.3.193
10.5307/JBE.2015.40.3.193
19
Qian T, Dieleman J, Elings A, De Gelder A, Marcelis L (2015) Response of tomato crop growth and development to a vertical temperature gradient in a semi-closed greenhouse. J Hortic Sci Biotechnol 90:578-584. doi:10.1080/14620316.2015.11668717
10.1080/14620316.2015.11668717
20
Rodríguez F, Berenguel M, Guzmán JL, Ramírez-Arias A (2015) Modeling and control of greenhouse crop growth. Springer International Publishing, Basel, Switzerland, p 250. doi:10.1007/978-3-319-11134-6
10.1007/978-3-319-11134-6
21
Simons MW, Waters JR (2002) Ventilation effectiveness parameters resulting from mechanical ventilation with recirculation. Int J Vent 1:119-126. doi:10.1080/14733315.2002.11683628
10.1080/14733315.2002.11683628
22
Thakur A, Panesar PS, Saini MS (2018) Parametric optimization of lactic acid production by immobilized Lactobacillus casei using Box-Behnken Design. Period Polytech Chem 62:274-285. doi:10.3311/PPch.11403
10.3311/PPch.11403
23
Villarreal-Guerrero F, Kacira M, Fitz-Rodríguez E, Linker R, Kubota C, Giacomelli GA, Arbel A (2012) Simulated performance of a greenhouse cooling control strategy with natural ventilation and fog cooling. Biosyst Eng 111:217-228. doi:10.1016/j.biosystemseng.2011.11.015
10.1016/j.biosystemseng.2011.11.015
24
Yang X, Short T, Fox R, Bauerle W (1989) The microclimate and transpiration of a greenhouse cucumber crop. Trans ASAE 32:2143-2150. doi:10.13031/2013.31276
10.13031/2013.31276
25
Youssef A, Dekock J, Ozcan S, Berckmans D, Katsoulas N, Kittas C (2011) Data-based approach to model the dynamic behaviour of greenhouse temperature. Acta Hortic 893:931-938. doi:10.17660/ActaHortic.2011.893.104
10.17660/ActaHortic.2011.893.104
26
Zeng S, Hu H, Xu L, Li G (2012) Nonlinear adaptive PID control for greenhouse environment based on RBF network. Sensors 12:5328-5348. doi:10.3390/s120505328
10.3390/s12050532822778587PMC3386686
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :2
  • Pages :187-200
  • Received Date : 2019-10-29
  • Revised Date : 2019-12-28
  • Accepted Date : 2020-01-28