All Issue

2020 Vol.38, Issue 1 Preview Page

Research Article

28 February 2020. pp. 9-20
Abstract
References
1
Aebi H (1974) Catalase. In Methods of enzymatic analysis. Academic press, Cambridge, Massachusetts, pp 673-684. doi:10.1016/B978-0-12-091302-2.50032-3
10.1016/B978-0-12-091302-2.50032-3
2
Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress? J Plant Physiol 164:685-694. doi:10.1016/j.jplph.2006.05.010
10.1016/j.jplph.2006.05.01016884826
3
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1. doi:10.1104/pp.24.1.1
10.1104/pp.24.1.116654194PMC437905
4
Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004-1011. doi:10.1016/j.ecoenv.2010.03.009
10.1016/j.ecoenv.2010.03.00920399499
5
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3
10.1016/0003-2697(76)90527-3
6
Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48-54. doi:10.1016/S1360-1385(97)82562-9
10.1016/S1360-1385(97)82562-9
7
Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann Bot 103:551-560. doi:10.1093/aob/mcn125
10.1093/aob/mcn12518662937PMC2707345
8
Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environ Exp Bot 65:177-182. doi:10.1016/j.envexpbot.2008.12.008
10.1016/j.envexpbot.2008.12.008
9
Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed‐forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196:752-762. doi:10.1111/j.1469-8137.2012.04299.x
10.1111/j.1469-8137.2012.04299.x22994889
10
Eom S, Baek S A, Kim J, Hyun T (2018) Transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinensis) provides the role of glucosinolate metabolism in response to drought stress. Molecules 23:1186. doi:10.3390/molecules23051186
10.3390/molecules2305118629762546PMC6099646
11
Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281-284. doi:10.1023/B:PHOT.0000011962.05991.6c
10.1023/B:PHOT.0000011962.05991.6c
12
Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133:21-25. doi:10.1007/BF00386001
10.1007/BF0038600124425174
13
Gechev TS, Gadjev I, Van Breusegem F, Inzé D, Dukiandjiev S, Toneva V, Minkov I (2002) Hydrogen peroxide protects tobacco from oxidative stress by inducing a set of antioxidant enzymes. Cell Mol Life Sci 59:708-714. doi:10.1007/s00018-002-8459-x
10.1007/s00018-002-8459-x12022476
14
Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: A review. Environ Exp Bot 68:14-25. doi:10.1016/j.envexpbot.2009.08.005
10.1016/j.envexpbot.2009.08.005
15
He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, et al. (2012) DEXH box RNA helicase-mediated mitochondrial reactive oxygen species production in Arabidopsis mediates crosstalk between abscisic acid and auxin signaling. Plant Cell 24:1815-1833. doi:10.1105/tpc.112.098707
10.1105/tpc.112.09870722652060PMC3442571
16
Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189-198. doi:10.1016/0003-9861(68)90654-1
10.1016/0003-9861(68)90654-1
17
Hernandez J, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea plants (Pisum sativum) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ 23:853-862. doi:10.1046/j.1365-3040.2000.00602.x
10.1046/j.1365-3040.2000.00602.x
18
Hu WH, Song XS, Shi K, Xia XJ, Zhou YH, Yu JQ (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46:581. doi:10.1007/s11099-008-0098-5
10.1007/s11099-008-0098-5
19
Janda T, Szalai G, Rios-Gonzalez K, Veisz O, Páldi E (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci 164:301-306. doi:10.1016/S0168-9452(02)00414-4
10.1016/S0168-9452(02)00414-4
20
Kadioglu A, Saruhan N, Sağlam A, Terzi R, Acet T (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27-37. doi:10.1007/s10725-010-9532-3
10.1007/s10725-010-9532-3
21
Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T (2010) Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. Sci Hortic 126:402-407. doi:10.1016/j.scienta.2010.07.037
10.1016/j.scienta.2010.07.037
22
Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA (2015) Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci 6:462. doi:10.3389/fpls.2015.00462
10.3389/fpls.2015.00462
23
Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013a) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal Behav 8:e26374. doi:10.4161/psb.26374
10.4161/psb.2637424022274PMC4091357
24
Khan MIR, Khan NA (2013b) Salicylic acid and jasmonates: Approaches in abiotic stress. J Plant Biochem Physiol 1:e113. doi:10.4172/2329-9029.1000e113
10.4172/2329-9029.1000e113
25
Khan NA, Nazar R, Iqbal N, Anjum NA (2012) Phytohormones and Abiotic Stress Tolerance in Plants. Springer Science and Business Media. doi:10.1007/978-3-642-25829-9
10.1007/978-3-642-25829-9
26
Kocsy G, Tari I, Vanková R, Zechmann B, Gulyás Z, Poór P, Galiba G (2013) Redox control of plant growth and development. Plant Sci 211:77-91. doi:10.1016/j.plantsci.2013.07.004
10.1016/j.plantsci.2013.07.00423987814
27
Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751-5754
28
Landberg T, Greger M (2002) Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis. J Plant Physiol 159:69-75. doi:10.1078/0176-1617-00504
10.1078/0176-1617-00504
29
Laughton MJ, Halliwel B, Evans PJ, Robin J, Hoult S (1989) Antioxidant and pro-oxidant actions of the plant phenolics quercetin, gossypol and myricetin: Effects on lipid peroxidation, hydroxyl radical generation and bleomycin-dependent damage to DNA. Biochem Pharmacol 38:2859-2865. doi:10.1016/0006-2952(89)90442-5
10.1016/0006-2952(89)90442-5
30
Lee G, Lee G, Yu J, Kim Y, Park Y (2018) Correlation network analysis of abiotic stress-related genes reveals the coordinated regulation of transcription in Chinese cabbage. Hortic Sci Technol 36:266-279. doi:10.12972/kjhst.20180027
10.12972/kjhst.20180027
31
Lee G, Park Y (2017) A co-expression network of drought stress-related genes in Chinese cabbage. Hortic Sci Technol 35:243-251. doi:10.12972/kjhst.20170027
10.12972/kjhst.20170027
32
Mathur S, Jajoo A, Mehta P, Bharti S (2011) Analysis of elevated temperature‐induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biol 13:1-6. doi:10.1111/j.1438-8677.2009.00319.x
10.1111/j.1438-8677.2009.00319.x21143718
33
Metwally A, Finkemeier I, Georgi M, Dietz KJ (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272-281. doi:10.1104/pp.102.018457
10.1104/pp.102.01845712746532PMC166972
34
Mignolet-Spruyt L, Xu E, Idä nheimo N, Hoeberichts FA, Mü hlenbock P, Brosché M, Van Breusegem F, Kangasjä rvi J (2016) Spreading the news: Subcellular and organellar reactive oxygen species production and signaling. J Exp Bot 67:3831-3844. doi:10.1093/jxb/erw080
10.1093/jxb/erw08026976816
35
Misra N, Dwivedi UN (2004) Genotypic difference in salinity tolerance of green gram cultivars. Plant Sci 166:1135-1142. doi:10.1016/j.plantsci.2003.11.028
10.1016/j.plantsci.2003.11.028
36
Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205-214. doi:10.1016/j.envexpbot.2004.03.015
10.1016/j.envexpbot.2004.03.015
37
Møller IM (2001) Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Biol 52:561-591. doi:10.1146/annurev.arplant.52.1.561
10.1146/annurev.arplant.52.1.56111337409
38
Møller IM, Sweetlove LJ (2010) ROS signalling - specificity is required. Trends Plant Sci 15:370-374. doi:10.1016/j.tplants.2010.04.008
10.1016/j.tplants.2010.04.00820605736
39
Moynihan MR, Ordentlich A, Raskin I (1995) Chilling-induced heat evolution in plants. Plant Physiol 108:995-999. doi:10.1104/pp.108.3.995
10.1104/pp.108.3.99512228523PMC157449
40
Munne-Bosch S, Penuelas J (2003) Photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta 217:758-766. doi:10.1007/s00425-003-1037-0
10.1007/s00425-003-1037-012698367
41
Pancheva TV, Popova LP, Uzunova AN (1996) Effects of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 149:57-63. doi:10.1016/S0176-1617(96)80173-8
10.1016/S0176-1617(96)80173-8
42
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880
43
Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M (2012) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc Natl Acad Sci USA 109:5535-5540. doi:10.1073/pnas.1115982109
10.1073/pnas.111598210922431637PMC3325660
44
Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439-463. doi:10.1146/annurev.pp.43.060192.002255
10.1146/annurev.pp.43.060192.002255
45
Saruhan N, Saglam A, Kadioglu A (2012) Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiol Plant 34:97-106. doi:10.1007/s11738-011-0808-7
10.1007/s11738-011-0808-7
46
Sasaki R (2004) Characteristics and seedling establishment of rice nursling seedlings. JARQ-Jpn Agric Res Q 38:7-13. doi:10.6090/jarq.38.7
10.6090/jarq.38.7
47
Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis-from steady-state to dynamics-from homogeneity to heterogeneity. Plant Cell Environ 29:340-352. doi:10.1111/j.1365-3040.2005.01490.x
10.1111/j.1365-3040.2005.01490.x17080590
48
Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845-851. doi:10.1104/pp.107.112490
10.1104/pp.107.11249018316639PMC2259057
49
Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209-221. doi:10.1007/s10725-005-0002-2
10.1007/s10725-005-0002-2
50
Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27-58. doi:10.1111/j.1469-8137.1993.tb03863.x
10.1111/j.1469-8137.1993.tb03863.x
51
Siddique MRB, Hamid AIMS, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sinica 41
52
Shawon RA, Kang BS, Kim HC, Lee SG, Kim SK, Lee HJ, Bae JH, Ku YG (2018) Changes in free amino acid, carotenoid, and proline content in Chinese Cabbage (Brassica rapa subsp. Pekinensis) in Response to Drought Stress. Korean J Plant Res 31:622-633
53
Sun C, Li X, Hu Y, Zhao P, Xu T, Sun J, Gao X (2015) Proline, sugars, and antioxidant enzymes respond to drought stress in the leaves of strawberry plants. Korean J Hortic Sci Technol 33:625-632. doi:10.7235/hort.2015.15054
10.7235/hort.2015.15054
54
Swarbreck SM, Colaco R, Davies JM (2013) Plant calcium-permeable channels. Plant Physiol 163:514-522. doi:10.1104/pp.113.220855
10.1104/pp.113.22085523860348PMC3793033
55
Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13-24. doi:10.1016/j.micres.2015.12.003
10.1016/j.micres.2015.12.00326856449
56
Wang H, Wu J, Sun S, Liu B, Cheng F, Sun R, Wang X (2011) Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135-142. doi:10.1016/j.gene.2011.07.021
10.1016/j.gene.2011.07.02121835231
57
War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6:1787-1792. doi:10.4161/psb.6.11.17685
10.4161/psb.6.11.1768522057329PMC3329353
58
Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469-490. doi:10.1093/mp/ssq016
10.1093/mp/ssq01620507936
59
Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247-273. doi:10.1146/annurev.arplant.53.091401.143329
10.1146/annurev.arplant.53.091401.14332912221975PMC3128348
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :1
  • Pages :9-20
  • Received Date : 2019-09-08
  • Revised Date : 2019-11-06
  • Accepted Date : 2019-11-17