All Issue

2021 Vol.39, Issue 2 Preview Page

Research Article

30 April 2021. pp. 191-203
Abstract
References
1
Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039-2055. doi:10.1093/jxb/erf072 10.1093/jxb/erf07212324528
2
Aprea E, Charles M, Endrizzi I, Corollaro ML, Betta E, Biasioli F, Gasperi F (2017) Sweet taste in apple: the role of sorbitol, individual sugars, organic acids and volatile compounds. Sci Rep 7:44950. doi:10.1038/srep44950 10.1038/srep4495028322320PMC5359574
3
Archetti M, Döring TF, Hagen SB, Hughes NM, Leather SR, Lee DW, Lev-Yadun S, Menetas Y, Ougham HJ, et al. (2009) Trends Ecol Evol 24:166-173. doi:10.1016/j.tree.2008.10.006 10.1016/j.tree.2008.10.00619178979
4
Armstrong GA, Hearst JE (1996) Genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10:228-237. doi:10.1096/fasebj.10.2.8641556 10.1096/fasebj.10.2.86415568641556
5
Blanco C, Diaz-Perales A, Collada C, Sanchez-Monge R, Aragoncillo C, Castillo R, Ortega N, Alvarez M, Carrilo T, et al. (1999) Class I chitinases as potentioal panallergens involved in the latex-fruit syndrome. J Allergy Clin Immunol 103:507-513. doi:10.1016/S0091-6749(99)70478-1 10.1016/S0091-6749(99)70478-1
6
Bohlmann J, Keeling CI (2008) Teropenoid biomaterials. Plant J 54:656-669. doi:10.1111/j.1365-313X.2008.03449.x 10.1111/j.1365-313X.2008.03449.x18476870
7
Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:1-15. doi:10.1186/1475-2891-3-5 10.1186/1475-2891-3-515140261PMC442131
8
Bradford MM (1976) A rapid sensitive methods for the quantization of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72:248-255. doi:10.1016/0003-2697(76)90527-3 10.1016/0003-2697(76)90527-3
9
Brehler R, Theissen U, Mohr C, Luger T (1997) Latex-fruit syndrome: frequency of cross-reacting IgE antibodies. Allergy 52:404-410. doi:10.1111/j.1398-9995.1997.tb01019.x 10.1111/j.1398-9995.1997.tb01019.x9188921
10
Choi HW, Lee BG, Kim NH, Park Y, Lim CW, Song HK, Hwang BK (2008) A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiol 148:383-401. doi:10.1104/pp.108.119461 10.1104/pp.108.11946118599651PMC2528125
11
Christopher MR, Gayle MV, Ann AR, Adam DH, Dale RL, Patrick AR, Philip LF (2009) Genetic diversity and population structure in Malus sieversii, a wild progenitor species of domesticated apple. Tree Genet Genomes 5:339-347. doi:10.1007/s11295-008-0190-9 10.1007/s11295-008-0190-9
12
Davies KM (2004) An introduction to plant pigments in biology and commerce. In KM Davies, ed, Plant pigments and their manipulation: Annual Plant Reviews, 14. Blackwell Publishing, Oxford, UK, pp 1-18. doi:10.1002/9781119312994.apr0131 10.1002/9781119312994.apr0131
13
Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268-281. doi:10.1105/tpc.104.026971 10.1105/tpc.104.02697115608336PMC544504
14
Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59:103-167. doi:10.1002/9780470123058.ch3 10.1002/9780470123058.ch3
15
Elzebroek ATG, Wind K (2008) Apple. In ATG Elzebrock and K Wind, ed, Guide to cultivated plants. CAB International, Wallingford, UK, pp 25-28 10.1079/9781845933562.0000
16
Fan X, Blankenship SM, Mattheis JP (1999) 1-Methylcyclopropene inhibits apple ripening. J Am Soc Hortic Sci 124:690-695. doi:10.21273/JASHS.124.6.690 10.21273/JASHS.124.6.690
17
Finkelstein R (2013) Abscisic Acid Synthesis and Response. The Arabidopsis Book 11:e0166. doi:10.1199/tab.0166 10.1199/tab.016624273463PMC3833200
18
Guarino C, Arena S, De Simone L, D'Ambrosio C, Santoro S, Rocco M, Scaloni A, Marra M (2007) Proteomic analysis of the major soluble components in Annurca apple flesh. Mol Nutr Food Res 51:255-262. doi:10.1002/mnfr.200600133 10.1002/mnfr.20060013317266180
19
Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16:574-581. doi:10.1038/nsmb.1591 10.1038/nsmb.159119491934
20
Herndl A, Marzban G, Hahn R, Boscia D, Hemmer W, Maghuly F, Stoyanova E, Katinger H (2007) Mapping of Malus domestica allergens by 2-D electrophoresis and IgE-reacivity. Electrophor 28:437-438. doi:10.1002/elps.200600342 10.1002/elps.20060034217195260
21
Holman JD, Dasari S, Tabb DL (2013) Informatics of protein and posttranslational modification detection via shotgun proteomics. Methods Mol Biol 1002:167-179. doi:10.1007/978-1-62703-360-2_14 10.1007/978-1-62703-360-2_1423625403PMC4012295
22
Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Remy R, Colas des Francs-Small C (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116:627-635. doi:10.1104/pp.116.2.627 10.1104/pp.116.2.6279490763PMC35120
23
Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel glectrophoresis. Plant Physiol 81:802-806. doi:10.1104/pp.81.3.802 10.1104/pp.81.3.80216664906PMC1075430
24
Ikeda H, Esaki N, Nakai S, Hashimoto K, Uesato S, Soda K, Fujita T (1991) Acyclic monoterpene primary alcohol:NADP+ oxidoreductase of Rauwolfia serpentina cells: the key enzyme in biosynthesis of monoterpene alcohols. J Biochem 109:341-347
25
Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp Bot 63:2159-2170. doi:10.1093/jxb/err434 10.1093/jxb/err43422223809PMC3295403
26
Jetter R, Kunst L, Samuels AL (2006) Composition of plant cuticular waxes. In M Riederer, C Muller, eds, Biology of the plant cuticle, Blackwell, Oxford, UK, pp 145-181. doi:10.1002/9780470988718.ch4 10.1002/9780470988718.ch4
27
Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607-1608. doi:10.1104/pp.100.3.1607 10.1104/pp.100.3.160716653170PMC1075832
28
Kim JH, Shim SY, Chang ES, Sohn YG, Kim YH, Kim JG, Lee JJ (2020) A Large-scale proteome analysis of proteins expressed in the peel of the Malusdomestica 'Hong-Ro' apple. Hortic Sci Technol 38:795-809
29
Kolattukudy PE (2001) Polyesters in higher plants. Adv Biochem Eng Biot 71:1-49. doi:10.1007/3-540-40021-4_1 10.1007/3-540-40021-4_111217409
30
Kwon YS, Lee DY, Rakwal R, Baek SB, Lee JH, Kwak YS, Seo JS, Chung WS, Bae DW, et al. (2016) Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium aenibacillus polymyxa E681 and Arabidopsis thaliana. Proteom 16:122-135. doi:10.1002/pmic.201500196 10.1002/pmic.20150019626460066
31
Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F Imperato, ed, Phytochemistry: Advances in Research, Research Singpost, Kerala, India, pp 23-67
32
Leaver MJ, George SG (1998) A piscine glutathione S-transferase which efficiently conjugates the end-roducts of lipid peroxidation. Mar Environ Res 46:71-74. doi:10.1016/S0141-1136(97)00071-8 10.1016/S0141-1136(97)00071-8
33
Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeng JC, Lee HS, Kwak SS (2012) Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars. Plant Sci 193-194:120-129. doi:10.1016/j.plantsci.2012.06.003 10.1016/j.plantsci.2012.06.00322794925
34
Marondedze C, Thomas LA (2012) Apple Hypanthium Firmness: New Insights from Comparative Proteomics. Appl Biochem Biotechnol 168:306-326. doi:10.1007/s12010-012-9774-9 10.1007/s12010-012-9774-922733236
35
Martin LBB, Rose JKC (2014) There's more than one way to skin a fruit: formation and functions of fruit cuticles. J Exp Bot 65:4639-4651. doi:10.1093/jxb/eru301 10.1093/jxb/eru30125028557
36
Marzban G, Puehringer H, Dey R, Brynda S, Ma Y, Martinelli A, Zaccarini M, van der Weg E, Housley Z, et al. (2005) Localisation and distribution of the major allergens in apple fruits. Plant Sci 169:387-394. doi:10.1016/j.plantsci.2005.03.027 10.1016/j.plantsci.2005.03.027
37
Matsui NM, Smith-Beckerman DM, Epstein LB (1999) Staining of preparative 2-D gels. In AJ Link, ed, 2-D Proteome Analysis Protocols, Humana Press, Totowa, New Jersey, USA, pp 301-311
38
Meriläinen G, Poikela V, Kursula P, Wierenga RK (2009) The thiolase reaction mechanism: the importance of Asn316 and His348 for stabilizing the enolate intermediate of the Claisen condensation. Biochem 48:11011-11025. doi:10.1021/bi901069h 10.1021/bi901069h19842716
39
Palma JM, Corpas FJ, del Río LA (2011) Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteom 74:1230-1243. doi:10.1016/j.jprot.2011.04.010 10.1016/j.jprot.2011.04.01021524723
40
Pirrung MC (1999) Ethylene biosynthesis from 1-aminocyclopropanecarboxylic acid. Acc Chem Res 32:711-718. doi:10.1021/ar960003 10.1021/ar960003
41
Popov VO, Lamzin VS (1994) NAD (+)-dependent formate dehydrogenase. Biochem J 301:625-643. doi:10.1042/bj3010625 10.1042/bj30106258053888PMC1137035
42
Pühringer H, Moll D, Hoffmann-Sommergruber K, Watillon B, Katinger H, Laimer da Câmara Machado M (2000) The promoter of an apple YPR10 gene, encoding the major apple allergen Mal d 1, is stress and pathogen-inducible. Plant Sci 152:35-50. doi:10.1016/S0168-9452(99)00222-8 10.1016/S0168-9452(99)00222-8
43
Qin G, Wang Q, Liu J, Li B, Tian S (2009) Proteomic analysis of changes in mitochondrial protein expression during fruit senescence. Proteom 9:4241-4253. doi:10.1002/pmic.200900133 10.1002/pmic.20090013319688753
44
Quideau S, Deffieux D, Douat-Casassus C, Pouységu (2011) Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew Chem 50:586-621. doi:10.1002/anie.201000044 10.1002/anie.20100004421226137
45
Ribeiro FA, Gomes de Moura CF, Aguiar O Jr, de Oliveira F, Spadari RC, Oliveira NR, Oshima CT, Ribeiro DA (2014) The chemopreventive activity of apple against carcinogenesis: antioxidant activity and cell cycle control. Eur J Cancer Prev 23:477-480. doi:10.1097/CEJ.0000000000000005 10.1097/CEJ.000000000000000524366437
46
Salcedo G, Sanchez-Monge R, Diaz-Perales A, Garcia-Casado G, Barber D (2004) Plant non-specific lipid transfer proteins as food and pollen allergens. Clin Exp Allergy 34:1336-1341. doi:10.1111/j.1365-2222.2004.02018.x 10.1111/j.1365-2222.2004.02018.x15347364
47
Sancho AI, Foxall R, Rigby NM, Browne T, Zuidmeer L, van Ree R, Waldron KW, Mills EN (2006a) Maturity and storage influence on the apple (Malus domestica) allergen Mal d 3, a nonspecific lipid transfer protein. J Agric Food Chem 54:5098-5104. doi:10.1021/jf0530446 10.1021/jf053044616819922
48
Sancho AI, Foxall R, Browne T, Dey R, Zuidmeer L, Marzban G, Waldron, KW, van Ree R, et al. (2006b) Effect of postharvest storage on the expression of the apple allergen Mal d 1. J Agric Food Chem 54:5917-5923. doi:10.1021/jf060880m 10.1021/jf060880m16881695
49
Shin MH, Muneer S, Kim YH, Lee JJ, Bae DW, Kwack YB, Kumarihami HMPC, Kim JG (2020) Proteomic analysis reveals dynamic regulation of fruit ripening in response to exogenous ethylene in kiwifruit cultivars. Hortic Environ Biotechnol 61:93-114. doi:10.1007/s13580-019-00209-6 10.1007/s13580-019-00209-6
50
Suzuki K, Nakanishi H, Bower J, Yoder DW, Osteryoung KW, Miyagishima SY (2009) Plastid chaperonin proteins Cpn60 alpha and Cpn60 beta are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9:38-38. doi:10.1186/1471-2229-9-38 10.1186/1471-2229-9-3819344532PMC2670834
51
Teo G, Suzuki Y, Uratsu SL, Lampinen B, Ormonde N, Hu WK, DeJong TM, Dandekar AM (2006) Silencing leaf sorbitol synthesis alters long-distance partitioning and apple fruit quality. PNAS 103:18842-18847. doi:10.1073/pnas.0605873103 10.1073/pnas.060587310317132742PMC1693749
52
van Ree R (2002) Clinical importance of non-specific lipid transfer proteins as food allergens. Biochem Soc Trans 30:910-913. doi:10.1042/bst0300910 10.1042/bst030091012440944
53
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, et al. (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833-841. doi:10.1038/ng.654 10.1038/ng.65420802477
54
Vershinin A (2008) Biological functions of carotenoids ‐ diversity and evolution. Biofactors 10:99-104. doi:10.1002/biof.5520100203 10.1002/biof.552010020310609869
55
Yang H, Zhang T, Masuda T, Lv C, Sun L, Qu G, Zhao G (2011) Chitinase III in pomegranate seeds (Punica granatum Linn): a high-capacity calcium-binding protein in amyloplasts. Plant J 68:765-776. doi:10.1111/j.1365-313X.2011.04727.x 10.1111/j.1365-313X.2011.04727.x21790816
56
Yi X, McChargue M, Laborde S, Frankel LK, Bricker TM (2005) The manganese-stabilizing protein is required for photosystem II assembly/stability and photoautotrophy in higher plants. J Biol Chem 280:16170-16174. doi:10.1074/jbc.M501550200 10.1074/jbc.M50155020015722336
57
Zheng Q, Song J, Campbell-Palmer L, Thompson K, Li L., Walker B, Cui Y, Li X (2013) A proteomic investigation of apple fruit during ripening and in response to ethylene treatment. J Proteom 93:276-294. doi:10.1016/j.jprot.2013.02.006 10.1016/j.jprot.2013.02.00623435059
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 39
  • No :2
  • Pages :191-203
  • Received Date : 2020-10-12
  • Revised Date : 2020-11-05
  • Accepted Date : 2020-12-03