All Issue

2020 Vol.38, Issue 3 Preview Page

Research Article

30 June 2020. pp. 351-363
Abstract
References
1
Abe K, Kido S, Maeda T, Kami D, Matsuura H, Shimura H, Suzuki T (2015) Glucosinolate profiles in Cardaminefauriei and effect of light quality on glucosinolate concentration. Sci Hortic 189:12-16. doi:10.1016/j.scienta.2015.03.028
10.1016/j.scienta.2015.03.028
2
Ahmad G, Jan A, Arif M, Jan MT, Khattak RA (2007) Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J Zhejiang Univ Sci B 8:731-737. doi:10.1631/jzus.2007.B0731
10.1631/jzus.2007.B073117910116PMC1997227
3
Animal and Plant Quarantine Agency (QIA) (2019) Plant name list. Animal and Plant Quarantine Agency, Korea, https://www.qia.go.kr/listHosqiaPopWebAction.do
4
Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163-190. doi:10.1007/s11099-013-0021-6
10.1007/s11099-013-0021-6
5
Bacon KL, Belcher CM, Haworth M, McElwain JC (2013) Increased atmospheric SO2 detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland. PLoS ONE 8:e60614. doi:10.1371/journal.pone.0060614
10.1371/journal.pone.006061423593262
6
Bartra DJ, Tibbitts TW, Bula RJ,Morrow RC (1992) Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv Space Res 5:141-149. doi:10.1016/0273-1177(92)90020-X
10.1016/0273-1177(92)90020-X
7
Bula RJ, Morrow RC, Tibbitts TW, Bartra DJ (1991) Light-emitting diodes as a radiation source for plants. HortScience 26:203-205. doi:10.21273/HORTSCI.26.2.203
10.21273/HORTSCI.26.2.20311537727
8
Darrall NM (1989) The effect of air pollutants on physiological processes in plants. Plant Cell Environ 12:1-30. doi:10.1111/j.1365-3040.1989.tb01913.x
10.1111/j.1365-3040.1989.tb01913.x
9
Deng M, Qian H, Chen L, Sun B, Chang J, Miao H, Cai C, Wang Q (2017) Influence of pre-harvest red light irradiation on main phytochemicals and antioxidant activity of Chinese kale sprouts. Food Chem 222:1-5. doi:10.1016/j.foodchem.2016.11.157
10.1016/j.foodchem.2016.11.15728041552
10
European Community (EC) (1990) Determination of the oilseed glucosinolate content by HPLC. Off. J. Eur. Communities, L170: 03.07.27-34
11
Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. doi:10.1016/S0031-9422(00)00316-2
10.1016/S0031-9422(00)00316-2
12
Fenwick GR, Heaney RK (1983) Glucosinolates and their breakdown products in cruciferous crops, food, and feedingstuffs. Food Chem 11:249-271. doi:10.1016/0308-8146(83)90074-2
10.1016/0308-8146(83)90074-2
13
Huseby S, Koprivova A, Lee BR, Saha S, Mithen R, Wold AB, Bengtsson GB, Kopriva S (2013) Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J Exp Bot 64:1039-1048. doi:10.1093/jxb/ers378
10.1093/jxb/ers37823314821PMC3580815
14
Iqbal S, Chouhan A, Bafna A (2014) Study of changes in some parameters of soybean in response to industrial air pollutants. Soybean Res 12:85-96
15
Ivana RR, Tajana G, Karmela D, Jasna V (2008) Glucosinolates and their potential role in plant. Periodicum Biologorum 110:297-309
16
Josefsson E (1968) Method for quantitative determination of p-hydroxybenzyl isothiocyanate in digests of seed meal of Sinapisalba L. J Sci Food Agric 19:92-94. doi:10.1002/jsfa.2740190405
10.1002/jsfa.2740190405
17
Jóska G, Podestát J, Stahl T, Kübler K, Brückner H, Sundermann VM, Mühling KH (2009) Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian Mustard (Brassica juncea L.). J Agric Food Chem 57:3837-3844. doi:10.1021/jf803636h
10.1021/jf803636h19309148
18
Kim YW, Lee SJ, Kim KH, Lee IS (2011) An implementation of a wireless gas automatic measurement and identification system for monitoring of crop growth environment. J Adv Info Technol Converg 9:11-23
19
Kushad MM, Brown AF, Kurilich AC, Juvik JA, Klein BP, Wallig MA, Jeffery EH (1999) Variation of glucosinolates in vegetable crops of Brassica oleracea. J Agric Food Chem 47:1541-1548. doi:10.1021/jf980985s
10.1021/jf980985s10564014
20
La GX, Fang P, Teng YB, Li YJ, Lin XY (2009) Effect of CO2 enrichment on the glucosinolate contents under different nitrogen levels in bolting stem of Chinesekale (Brassica alboglabra L.). J Zhejiang Univ Sci B 10:454-464. doi:10.1631/jzus.B0820354
10.1631/jzus.B082035419489111PMC2689558
21
Lee GJ, Heo JW, Jung CR, Kim HH, Jo JS, Lee JG, Lee GJ, Nam SY, Hong EY (2016) Effects of artificial light sources on growth and glucosinolate contents of hydroponically grown kale in plant factory. J Bio-Environ Control 2:77-82. doi:10.12791/KSBEC.2016.25.2.77
10.12791/KSBEC.2016.25.2.77
22
Lee HJ, Chun JH, Kim SJ (2017) Effects of preharvest light treatments (LEDs, fluorescent lamp, UV-C) on glucosinolate contents in rocket salad (Eruca sativa). Korean J Hortic Sci Technol 35:178-187. doi:10.12791/KSBEC.2016.25.2.77
10.12791/KSBEC.2016.25.2.77
23
Lee HK, Khaine I, Kwak MJ, Jang JH, Lee TY, Lee JK, Kim IR, Kim WI, Oh KS, Woo SY (2017) The relationship between SO2 exposure and plant physiology: a mini review. Hortic Environ Biotechnol 58:523-529. doi:10.1007/s13580-017-0053-0
10.1007/s13580-017-0053-0
24
Lefsrud MG, Kopsell DA, Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortScience 43:2243-2244. doi:10.21273/HORTSCI.43.7.2243
10.21273/HORTSCI.43.7.2243
25
Liebscher G (1895) Untersuchungenüber die bestimmung des düngerbedürfnisses der ackerböden und kulturpflanzen. J Landwirtsch 43:49-216
26
Mazumder A, Dwivedi A, Plessis JD (2016) Sinigrin and its therapeutic benefits. Molecules 21:416. doi:10.3390/molecules21040416
10.3390/molecules2104041627043505PMC6273501
27
Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381-1405. doi:10.1039/c1np00020a
10.1039/c1np00020a21681321
28
Possenti M, Baima S, Raffo A, Durazzo A, Giusti AM, Natella F (2017) Glucosinolates in food. In JM Mérillon, K Ramawat (eds.). Glucosinolates. Reference series in Phytochemistry (RSP). Springer, Cham, Switzerland, pp 87-132. doi:10.1007/978-3-319-25462-3_4
10.1007/978-3-319-25462-3_4
29
Qian H, Liu T, Deng M, Miao H, Cai C, Shen W, Wang Q (2016) Effect of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem 196:1232-8. doi:10.1016/j.foodchem.2015.10.055
10.1016/j.foodchem.2015.10.05526593611
30
Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005) Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. Am J Bot 92:1141-1151. doi:10.3732/ajb.92.7.1141
10.3732/ajb.92.7.114121646136
31
Song TE, Park SJ, Moon JK, Kim IS, Lee CH (2019) Growth characteristics and DPPH radical scavenging activity of lettuce 'Fidel' in plant factory using activated mineral groups and light-emitting diode lights. J Plant Res 32:228-236. doi:10.7732/kjpr.2019.32.3.228
32
Steindal ALH, Mølmann J, Bengtsson GB, Johansen TJ (2013) Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica). J Agric Food Chem 61:10779-10786. doi:10.1021/jf403466r
10.1021/jf403466r24168154
33
Sun B, Liu N, Zhao Y, Yan H, Wang Q (2011) Variation of glucosinolates in three edible parts of Chinese kale (Brassica oleracea var. Alboglabra Bailey) varieties. Food Chem 124:941-947. doi:10.1016/j.foodchem.2010.07.031
10.1016/j.foodchem.2010.07.031
34
Teklehaymanot T, Wang H, Liang J, Wu J, Lin R, Zhou Z, Cai X, Wang X (2019) Variation in plant morphology and sinigrin content in Ethiopian mustard (Brassica carinata L.). Hortic Plant J 5:205-212. doi:10.1016/j.hpj.2019.07.005
10.1016/j.hpj.2019.07.005
35
Toyoki K (2007) Propagation, grafting and transplant production in closed systems with artificial lighting for commercialization in Japan. Propag Ornam Plants 7:145-149
36
Velasco P, Cartea ME, Gonzalez C, Vilar M, Ordas A (2007) Factors affecting the glucosinolate content of kale (Brassica oleracea var. acephala group). J Agric Food Chem 55:955-962. doi:10.1021/jf0624897
10.1021/jf062489717263499
37
Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263-270. doi:10.1016/S1360-1385(02)02273-2
10.1016/S1360-1385(02)02273-2
38
Wollny E (1887) Das Grundgesetz der Pflanzenproduktion. Illust Monatshefte Gesamt-Interessen Gartenbaues 6:232-237, 257-260, 290-293
39
Xin J, Liu H, Song S, Chen R, Sun G (2015) Growth and quality of Chinese kale grown under different LEDs. Agric Sci Tec 16:68-69
40
Zhao F, Evans EJ, Bilsborrow PE, Schnug E, Syers JK (1994) Influence of nitrogen and sulphur on the glucosinolate profiles of rapeseed (Brassica napus L.). J Sci Food Agric 64:295-304. doi:10.1002/jsfa.2740640309
10.1002/jsfa.2740640309
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :3
  • Pages :351-363
  • Received Date : 2019-12-04
  • Revised Date : 2020-02-11
  • Accepted Date : 2020-02-26