All Issue

2019 Vol.37, Issue 2 Preview Page

Research Article

30 April 2019. pp. 227-237
Abstract
References
1
Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086-1089. doi:10.1126/science.241.4869.1086
2
Borochov A, Woodson WR (1989) Physiology and biochemistry of flower petal senescence,horticultural reviews. Physiology and biochemistry of flower petal senescence. Hortic Rev 11:15-43
3
Chang C, Kwok S, Bleecker A, Meyerowitz E (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539-544. doi:10.1126/science.8211181
4
Doi M, Hu Y, Imanishi H (2000) Water relations of cut roses as influenced by vapor pressure deficits and temperatures. J Jpn Soc Hortic Sci 69:584-589. doi:10.2503/jjshs.69.584
5
Faragher JD, Mor Y, Johnson F (1987) Role of aminocyclopropane-1-carboxylic acid (ACC) in control of ethylene production in fresh and cold-stored rose flowers. J Exp Bot 38:1839-1847. doi: 10.1093/jxb/38.11.1839
6
Gao Z, Chen Y-F, Randlett MD, Zhao X-C, Findell JL, Kieber J, Schaller G (2003) Localization of the Raf-like Kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725-34732. doi:10.1074/jbc.M305548200
7
Gong B, Huang S, Ye N, Yuan X, Ma H (2018) Pre‑harvest ethylene control affects vase life of cut rose ‘Carola’ by regulating energy metabolism and antioxidant enzyme activity. Hort Environ Biotechnol 59:835-845. doi:10.1007/s13580-018-0053-8
8
Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261-271. doi:10.1016/S0092-8674(00)81425-7
9
Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321-1332. doi:10.1105/tpc.10.8.1321
10
Huang S, Gong B, Wei F, Ma H (2017) Pre-harvest 1-methylcyclopropene application affects post-harvest physiology and storage life of the cut rose cv. Carola. Hortic Environ Biotechnol 58:144-151. doi:10.1007/s13580-017-0081-9
11
Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221-233. doi:10.1046/j.1365-313X.2003.01620.x
12
In B-C, Binder BM, Falbel TG, Patterson SE (2013) Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). J Exp Bot 64:4923-4937. doi:10.1093/jxb/ert281
13
In BC, Ha STT, Lee YS, Lim JH (2017) Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol Technol 131:74-83. doi:10.1016/j.postharvbio.2017.05.003
14
In B-C, Lim JH (2018) Potential vase life of cut roses: Seasonal variation and relationships with growth conditions, phenotypes, and gene expressions. Postharvest Biol Technol 135:93-103. doi:10.1016/j.postharvbio.2017.09.006
15
Jones ML (2003) Ethylene biosynthetic genes are differentially regulated by ethylene and ACC in carnation styles. Plant Growth Regul 40:129-138. doi:10.1023/a:1024241006254
16
Jones ML, Woodson WR (1997) Pollination-induced ethylene in Carnation (Role of stylar ethylene in corolla senescence). Plant Physiol 115:205-212. doi:10.1104/pp.115.1.205
17
Jones ML, Woodson WR (1999) Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in Carnation. Plant Physiol 119:755-764. doi:10.1104/pp.119.2.755
18
Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427-441. doi:10.1016/0092-8674(93)90119-B
19
Kuroda S, Hakata M, Hirose Y, Shiraishi M, Abe S (2003) Ethylene production and enhanced transcription of an ethylene receptor gene, ERS1, in Delphinium during abscission of florets. Plant Physiol Biochem 41:812-820. doi:10.1016/S0981-9428(03)00115-3
20
Ma N, Tan H, Liu X, Xue J, Gao J (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. J Exp Bot 57:2763-2773. doi:10.1093/jxb/erl033
21
Macnish AJ, Leonard RT, Borda AM, Nell TA (2010) Genotypic variation in the postharvest performance and ethylene sensitivity of cut rose flowers. HortScience 45:790-796. doi:10.21273/HORTSCI.45.5.790
22
Mor Y, Halevy AH, Spiegelstein H, Mayak S (1985) The site of 1-aminocyclopropane-1-carboxylic acid synthesis in senescing carnation petals. Physiol Plant 65:196-202. doi:10.1111/j.1399-3054.1985.tb02382.x
23
Mor Y, Johnson F, Faragher JD (1989) Preserving the quality of cold-stored rose flowers with ethylene antagonists. HortScience 24:640-641
24
Muller R, Andersen AS, Serek M (1998) Differences in display life of miniature potted roses (Rosa hybrida L.). Sci Hortic 76:59-71. doi:10.1016/S0304-4238(98)00132-0
25
Müller R, Owen C, Xue Z-T, Welander M, Stummann B (2003) The transcription factor EIN3 is constitutively expressed in miniature roses with differences in postharvest life. J Hortic Sci Biotechnol 78:10-14. doi:10.1080/14620316.2003.11511575
26
Müller R, Owen CA, Xue ZT, Welander M, Stummann BM (2002) Characterization of two CTR-like protein kinases in Rosa hybrida and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223-1225. doi:10.1093/jexbot/53.371.1223
27
Muller R, Sisler EC, Serek M (2000a) Stress induced ethylene production, ethylene binding, and the response to the ethylene action inhibitor 1-MCP in miniature roses. Sci Hortic 83:51-59. doi:10.1016/S0304-4238(99)00099-0
28
Muller R, Stummann BM, Serek M (2000b) Characterization of an ethylene receptor family with differential expression in rose (Rosa hybrida L.) flowers. Plant Cell Rep 19:1232-1239. doi:10.1007/s002990000251
29
Muller R, Stummann BM, Sisler EC, Serek M (2001) Cultivar differences in regulation of ethylene production in miniature rose flowers (Rosa hybrida L.). Gartenbauwissenschaft 66:34-38
30
Mutui TM, Mibus H, Serek M (2007) Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul 53:87-96. doi:10.1007/s10725-007-9206-y
31
Narumi T, Kanno Y, Suzuki M, Kishimoto S, Ohmiya A, Satoh S (2005) Cloning of a cDNA encoding an ethylene receptor (DG-ERS1) from chrysanthemum and comparison of its mRNA level in ethylene-sensitive and -insensitive cultivars. Postharvest Biol Technol 36:21-30. doi:10.1016/j.postharvbio.2004.11.001
32
O'Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547-574. doi:10.1146/annurev. arplant.48.1.547
33
O'Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419-432. doi:10.1105/tpc.5.4.419
34
Overbeek JHM, Woltering EJ (1990) Synergistic effect of 1-aminocyclopropane-1-carboxylic acid and ethylene during senescence of isolated carnation petals. Physiol Plant 79:368-376. doi:10.1111/j.1399-3054.1990.tb06755.x
35
Reid MS, Evans RY, Dodge LL, Mor Y (1989) Ethylene and silver thiosulfate influence opening of cut rose flowers. J Am Soc Hortic Sci 114:436-440
36
Reid MS, Wu M-J (1992) Ethylene and flower senescence. Plant Growth Regul 11:37-43. doi:10.1007/bf00024431
37
Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812-5817. doi:10.1073/pnas.95.10.5812
38
Shibuya K, Yoshioka T, Hashiba T, Satoh S (2000) Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J Exp Bot 51:2067-2073. doi:10.1093/jexbot/51.353.2067
39
Singh A, Evensen KB, Kao T-h (1992) Ethylene synthesis and floral senescence following compatible and incompatible pollinations in Petunia inflata. Plant Physiol 99:38-45. doi:10.1104/pp.99.1.38
40
Tan H, Liu X, Ma N, Xue J, Lu W, Bai J, Gao J (2006) Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biol Technol 40:97-105. doi:10.1016/j.postharvbio.2006.01.007
41
ten Have A, Woltering EJ (1997) Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol 34:89-97. doi:10.1023/a:1005894703444
42
Thomas CJR, Smith AR, Hall MA (1985) Partial purification of an ethylene-binding site from Phaseolus vulgaris L. cotyledons. Planta 164:272-277. doi:10.1007/bf00396092
43
Tieman DM, Klee HJ (1999) Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol 120:165-172. doi:10.1104/pp.120.1.165
44
Verlinden S, Boatright J, Woodson WR (2002) Changes in ethylene responsiveness of senescence-related genes during carnation flower development. Physiol Plant 116:503-511. doi: 10.1034/j.1399-3054.2002.1160409.x
45
Vriezen WH, van Rijn CPE, Voesenek LACJ, Mariani C (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265-1271. doi:10.1046/j.1365-313X.1997.11061265.x
46
Wang D, Fan J, Ranu RS (2004) Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa × hybrida). Plant Cell Rep 22:422-429. doi:10.1007/s00299-003-0721-7
47
Xue JQ, Li YH, Tan H, Yang F, Ma N, Gao JP (2008) Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J Exp Bot 59:2161-2169. doi:10.1093/jxb/em078
48
Yau CP, Wang L, Yu M, Zee SY, Yip WK (2004) Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole‐3‐acetic acid and silver ions. J Exp Bot 55:547-556. doi:10.1093/jxb/erh055
49
Zhang JS, Xie C, Shen YG, Chen SY (2001) A two-component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Theor Appl Genet 102:815-824. doi:10.1007/s001220000469
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 37
  • No :2
  • Pages :227-237
  • Received Date : 2018-11-22
  • Revised Date : 2018-12-13
  • Accepted Date : 2018-12-17