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Abstract

This study was conducted to detect bacterial fruit blotch (BFB) in watermelon seedlings using 

near-infrared hyperspectral imaging (HSI) and to compare discrimination accuracies using a partial 

least squares-discriminant analysis (PLS-DA) model with two extraction methods, band ratio, and 

principal component analysis (PCA). Three concentrations (1 × 10
2
, 10

4
, and 10

6
 cfu/mL) of Acidovorax 

avenae subsp. citrulli were inoculated on the first true leaves of watermelon seedlings. Hyperspectral 

images were captured for 100 samples at 1 - 5 days after inoculation. The mean spectra for watermelon 

leaves infected with BFB were higher than those for the healthy leaves in the near-infrared range. 

Mean spectra for samples increased with increasing days after inoculation. This result was distinctly 

observed at the higher concentration. Two wavelengths, 1,588 and 1,450 nm, were selected as 

significant bands for the extraction of diseased area based on statistical t-tests. BFB symptoms were 

observed even at 1 day after inoculation from hyperspectral images taken out by two extraction 

methods. A PLS-DA model with band ratio extraction revealed better classification accuracies to 

distinguish BFB in watermelon leaves. A PLS-DA plot showed distinct groupings of diseased and 

healthy leaves in the calibration and validation sets. Hyperspectral imaging of watermelon leaves 

infected with BFB were visualized by applying the PLS-DA model. Our results demonstrate that 

near-infrared HSI is a promising technique for the detection of BFB in watermelon leaves.

Additional key words: classification accuracy, disease detection, partial least squares regression, 

preprocessing, spectral wavelengths

Introduction

Bacterial fruit blotch (BFB), caused by Acidovorax avenae subsp. citrulli, is one of the most 

common, widely destructive diseases of cucurbitaceous crops (Willems et al., 1992; Li et al., 2013). 

BFB can be introduced into cucurbit fields through contaminated seeds or infected transplants. Dense 

plant populations and high relative humidity often bring about the occurrence of BFB in nurseries 

(Dutta et al., 2012). Moreover, overhead irrigation easily spreads the pathogen between plants and 

can rapidly cause a large section of a greenhouse to become infected with BFB. Cucurbits infected 
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with BFB show seedling blight, leaf lesions, and fruit symptoms (Walcott et al., 2003). There is a time lag between 

infection and symptom development, so plants may remain symptomless for several days after infection. Therefore, early 

detection of BFB symptoms is required for reducing production and economic losses of cucurbits and preventing the 

spread of diseases. 

Various disease detection techniques have been applied to diagnose the presence of diseases in plants. Molecular 

techniques to detect disease infection such as enzyme-linked immunosorbent assay, real-time polymerase chain reaction, 

and DNA microarrays involve destructive sampling and are time-consuming. In spite of the availability of these techniques, 

there is a demand for a fast, sensitive, and reliable method for the rapid detection of plant diseases (Sankaran et al., 2010). 

Until now, several spectroscopic and imaging techniques (Lins et al., 2009; Rajendran et al., 2016; Wetterich et al., 

2016) have been reported for the detection of symptomatic and asymptomatic plant diseases. These techniques are unique 

disease monitoring methods that have been used to detect diseases and stress due to various factors in plants. However, 

spectroscopic methods are limited compared with hyperspectral imaging (HSI) techniques because they acquire spectral 

data from a single point or from a small portion of the tested sample (ElMasry et al., 2007). 

HSI is an emerging, rapid, and non-contact analytical method that combines the features of spectroscopy and imaging 

in a single system to acquire spectral and spatial information simultaneously from the target (Jiang et al., 2018). The HSI 

technique has been widely applied to diagnose plant disease (Yuan et al., 2014; Mahlein et al., 2017), plant stress (Mo et 

al., 2015; Mishra et al., 2017), moisture content (Deng et al., 2015; Jang et al., 2018), chlorophyll content (Sun et al., 2017; 

Jang et al., 2018), fruit ripeness (Zhang et al., 2016), and food inspection (Kandpal et al., 2015; Siedliska et al., 2018).

In HSI analysis, the average spectrum of all pixels of the pre-defined sample region can be used to build regression or 

to develop classification models for discrimination of agricultural products. The spectrum of each pixel can also be used 

for prediction to acquire chemical or category information of the pixel by the established models to visualize a prediction 

result. Dealing with the immense amount of data generated by HSI is a primary application challenge (Zhang et al., 2016). 

The spectral bands of hyperspectral images are highly correlated, resulting in collinearity and redundant information. 

Noises and useless information in the data are the main factors affecting the data analysis results; such as, reducing these 

factors is an important consideration in HSI analysis (Qin et al., 2013). Principal component analysis (PCA) and partial least 

squares-discriminant analysis (PLS-DA) are widely used for dimensionality reduction, feature extraction and discriminant 

analysis of high-dimensional data. The great power of HSI resides in its capability to deal with spectral as well as spatial 

information (ElMasry et al., 2007). To accomplish this capability, researchers tend to utilize their algorithms that can be 

used for predictive and descriptive modelling as well as for discriminative variable selection (Lee et al., 2018).

The aims of the present study were to extract the infected area in watermelon seedlings infected with BFB using 

near-infrared HSI, to compare the spectral reflectance of watermelon leaves taking into consideration the inoculation 

concentration and time following inoculation of BFB, and to evaluate the infection accuracies using PLS-DA.

Materials and Methods

Plant Materials

A total of 100 watermelon (Citrullus lanatus cv. Sambogkkul, Farm Hannong Co., Korea) seedlings with two true 

leaves were used as experimental plant materials in this study. Plants were grown in a walk-in chamber with a photoperiod 
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Fig. 1. Hyperspectral imaging system used in this experiment.

of 16/8 h (day/night), air temperature of 26/20°C (day/night), relative humidity of 65%, and photosynthetic photon flux 

of 200 µmol·m
-2
·s

-1
. Three concentrations (1 × 10

2
, 10

4
, 10

6 
cfu/mL) of Acidovorax avenae subsp. citrulli were inoculated 

on the first true leaves of 25 watermelon seedlings using a syringe, while 25 non-inoculated seedlings were used as a 

control. 

Data Acquisition and Preprocessing of Hyperspectral Image

The hyperspectral imaging (HSI) system was designed to acquire the sample spectra in the near-infrared range (NIR, 

900 - 1,700 nm). The system consisted of a NIR hyperspectral camera (SPECIM FX17, Spectra Imaging Ltd., Finland), 

two 150 W halogen lamps (93638EKE, Osram, Germany), and a 640 × 440 mm
2
 sample plate (Fig. 1). The hyperspectral 

camera combined with an indium gallium arsenide detector acquired HSI by scanning line by line, yielding the three- 

dimensional hypercube data with dimensions of 640 (pixels) × 972 (lines) × 224 (bands). The camera was mounted at 50 cm 

above a sample plate. The illumination sources were placed in two opposite frames positioned at an angle of 60° towards 

the sample plate. The speed of the sample plate was adjusted by a motorized actuator (EZSM4E065K, Oriental Motor 

Ltd., Japan) at a speed of 0.1 m·s
-1

. The exposure time and frame rate were optimized at 10 ms and 40 fps, respectively.

A total of 500 images (25 samples × 4 treatments × 5 days) were captured for 100 samples placed on the sample plate 

at 1 - 5 days after inoculation (DAI). Measurements were performed in a dark room controlled at an air temperature of 

22°C to prevent the influence of external illumination. The HSI data obtained during the measurements were recorded 

using data acquisition software (Specim Lumo, Spectral Imaging Ltd., Finland). Before capturing the HSI data, digital 

images of the samples were acquired by a digital camera (D90, Nikon, Japan). The original images obtained with the HSI 

system were subject to brightness correction using the following equation:




  

  
 (1)

where 


 is the relative reflectance of the hyperspectral image,   is the raw image data,  is the white reference image 

data, and  is the dark-current image data. 
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Fig. 2. A flowchart for acquisition, preprocessing, ROI extraction, classification modeling, and visualization of hyperspectral 
imaging data.

The dark current image was obtained by a complete covering of the camera lens with an opaque cap, and a white 

reflection image was obtained using a white reference plate (SRT-99-100, Labsphere, USA) with 99% reflectivity. A 

Savitzky-Golay filter with a 5-point moving average and a second-order polynomial was used for smoothing of 

brightness-corrected images in the present study. To remove background from the HSI, an 1,100 nm image presenting the 

highest intensity in the hyperspectral image was used with a 0.3 threshold value. 

Extraction of Region of Interests (ROI)

The ROI including the diseased area of each sample was extracted from the preprocessed HSI data. Fig. 2 illustrates the 

procedure for pre-processing, extraction of ROIs, and analyzing HSI data. Two methods, band ratio and principal 

component analysis (PCA), were applied to extract the ROI. Band ratio images can effectively enhance the contrast 

between bands and produce an image of relative band intensity (Huang et al., 2016). In the present work, two bands were 

taken for enhancing the contrast of the preprocessed HSI and thus producing more uniform responses across the leaves 

surface. Ratio image is defined using the following equation:

 



 (2)

where  represents a quotient of spectral reflectance, and  and  are reflectance intensities at  nm and  nm, 

respectively. Selection of the most significant wavelengths for the extraction of the diseased area was based on t values 

from a t-test between the two groups (i.e., healthy and infected areas) since our focus was to find an optimal band ratio for 

classifying those two groups.
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PCA was also used to extract the ROI and to discriminate between non-infected and infected leaves. Loadings of the 

wavelengths in each principal component (PC) indicated the contributions of the wavelengths. The wavelengths with 

higher absolute loading value had greater contributions. The peaks and valleys of each loading plot were selected as 

optimal wavelengths (Rodriguez-Pulido et al., 2013). The first few PCs could explain most of the variance, and loadings 

of these PCs were used to calculate the PC image at each wavelength as shown in the following equation:

 
  



 (3)

where  is the PC image,  is the weighting coefficient, and  is the image at the i th wavelength of a total of n 

spectral images. 

Weighted values were calculated based on a covariance matrix of the images. An image of 20 × 20 pixels, which 

included a spot on the leaves inoculated with concentrations of either 1 × 10
4
 cfu/mL or 1 × 10

6 
cfu/mL, was extracted 

from each PC image. 

Classification and Visualization of the Diseased Area using PLS-DA 

Partial least squares-discrimination analysis (PLS-DA) is an adaptation of PLS regression method with a categorical 

independent variable. Among 500 images acquired in this study, 200 images for the treatments of 1 × 10
4
 and 1 × 10

6 

cfu/mL concentrations were used for PLS-DA modeling and 50 images for visualization. In the current study, the 

independent variables for two groups (i.e., healthy and diseased areas) were set as 1 and 2, respectively. The hyperspectral 

images used for PLS-DA were randomly divided into calibration and validation sets consisting of 70% and 30%, 

respectively. The calibration data set was used to build the classification model, while the validation data set was used to 

test its capability of classifying new samples. The comparison between the two groups was based on the overall accuracy 

of the classification model in the calibration and validation sets. Accuracy was determined by the percentage of 

correctly classified samples and the sensitivity and specificity of each class for PLS-DA classification techniques 

(López-Maestresalas et al., 2016). 

The sensitivity and the specificity are defined as follows:

 



 (4)

 



 (5)



where  (true positive) is the proportion of samples belonging to class A that are correctly classified,  (false positive) 

is the proportion of samples belonging to another class B, which are classified as class A,  (true negative) is the 

proportion of samples belonging to another class B, that are correctly classified as class B, and  (false negative) is the 

proportion of samples belonging to class A that are falsely classified as class B. Sensitivity and specificity values ranged 

between 0 and 1. 
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A B

Fig. 3. Images of watermelon leaves acquired at different inoculation concentrations of Acidovorax avenae subsp. citrulli 

and the days after inoculation (DAI). (A) digital images; (B) hyperspectral images displayed at a wavelength of 1,400 nm.

The resultant PLS-DA image was constructed using the beta coefficients of the proposed PLS-DA model that were 

weighted coefficients of independent variables. For discrimination purposes, the PLS-DA binary image was created by 

applying a threshold value of 1.5. 

To display the diseased proportion information in a spatial domain, a visualization map was generated by applying the 

PLS-DA model to each pixel’s spectra of the image. Thus, the HSI was transformed into a two-dimensional matrix, and 

then the matrix was multiplied with the beta coefficients obtained from the best partial least squares regression model. A 

two-dimensional color image was plotted to show the distribution of diseased area in watermelon leaves.

Software

Spectral data and feature extraction were implemented in ENVI (V5.4, L3HARRIS, USA). T-test, PCA, PLS-DA 

model, and visualization were performed using MATLAB (R2019a, The Math Works, USA).

Results

Digital and Hyperspectral Images

Digital images and HSI of watermelon leaves obtained from different inoculation concentrations of Acidovorax avenae 

subsp. citrulli and DAI were shown in Fig. 3. In the digital images, it was not possible to visually detect BFB symptoms 

at the inoculation concentration of 1 × 10
2
. However, the diseased area was noticed from 4 DAI at the 1 × 10

4
 concentration 

treatment and from 3 DAI for the 1 × 10
6
 concentration. For non-preprocessed HSI displayed at a wavelength of 1,400 nm, 

similar results were obtained. That is, the detection of BFB symptoms was not detected at a concentration of 1 × 10
2
. 

Disease symptoms were clearly observed from 4 DAI at the 1 × 10
4
 concentration and from 3 DAI for the 1 × 10

6
 concentration. 

Even though small symptoms at 2 DAI for the 1 × 10
6
 concentration were marked in the vicinity of the leaf vein, the results 

were not so clear. Hence, it was presumed that at least 3 - 4 days were required to visually detect disease symptoms in 

watermelon leaves infected with BFB.
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Fig. 4. Mean ± standard deviation (n = 25) reflectance spectra of watermelon seedlings infected with BFB for NIR spectral 
range.

A B

Fig. 5. Spectral reflectance of watermelon leaves infected with different inoculation concentration of BFB as affected by the 
days after inoculation (DAI). (A) concentration of 1×10

4
; (B) concentration of 1×10

6
.

Spectral Reflectance of Watermelon Leaves Infected with BFB

The mean ± standard deviation reflectance spectra obtained from the NIR hyperspectral imaging systems were shown 

in Fig. 4. It can be seen that the variation is higher in the region between 1,370 and 1,530 nm. In Fig. 5, the mean spectra 

obtained at different concentration were plotted in order to investigate any possible differences between DAI. From Fig. 

5, it can be seen that the mean spectra for the samples infected with BFB were higher than those for the healthy samples 

(control) in the NIR spectral range. Mean spectra for samples increased with increasing DAI. This result was distinctly 

observed at the higher concentration. The color and size of diseased spots often change as the disease symptoms in plant 

leaves develop. These changes not only bring about increased susceptibility to other pests and pathogens, but also 

accelerate water loss. Compared to the control, there was a substantial increase in reflectance around 1,450 nm. 

Extraction of the Diseased Area

The band ratio algorithm was applied to extract the disease symptom on the leaves infected with BFB. Afterwards, 

selection of the most significant wavelength for detection of the diseased area in watermelon leaves was performed by 

using t values from the t-test between the two groups of infected and healthy leaves. The t values for infected and healthy 

areas were calculated for all 199 possible bands in the 1,000 - 1,700 nm region to find the most effective wavelength for 
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Fig. 6. A map with a t-value color bar calculated by a two-band ratio.

A B

C D

Fig. 7. Extraction of the diseased area on watermelon leaves infected with BFB using significant wavelengths in the 
hyperspectral images. Diseased areas as affected by the days after inoculation (DAI) were extracted by two-band ratio 
and principal component analysis (PCA) methods. (A) two-band ratio, 1 × 10

4
 concentration; (B) two-band ratio, 1 × 10

6

concentration; (C) PCA, 1 × 10
4
 concentration; (D) PCA, 1 × 10

6
 concentration.

differentiating between the two groups. A larger t value indicates a more statistically significant difference between the 

two groups. The result showed that the means of the two groups were most significantly separated by a two-band ratio at 

1,588 and 1,450 nm wavelengths (Fig. 6). These two selected wavelengths were used to extract the diseased area on 

watermelon leaves infected with BFB. Regardless of the inoculation concentration, bacterial disease symptoms were 
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Table 1. The sensitivity and specificity obtained by PLS-DA model

Data set Class Sensitivity Specificity

Band ratio Calibration

Validation

0.95

0.93

1.00

1.00

PCA Calibration

Validation

0.87

0.83

0.99

1.00

Fig. 8. Beta coefficient determined by PLS-DA model based on NIR hyperspectral data.

clearly observed in binary images (Fig. 7A and 7B). 

PCA for the image of 20 × 20 pixels including an inoculation spot was executed to discriminate between non-infected 

and infected leaves. PC images were obtained (Fig. 7C and 7D) and then added to hyperspectral images at 1,450 nm. PC1 

image showed features that led to the largest variance of the data, which exhibited large variation between diseased and 

healthy areas. Subsequent PC images depicting other features were ordered with respect to variations in spectral responses. 

Different PC images were implemented to discriminate between diseased and healthy areas. For instance, PC3 image was 

appropriate for masking images at 1 DAI with 1 × 10
4
 concentration, PC2 image for the images at 2 - 3 DAI, and PC1 

image for the images at 4 - 5 DAI. For the 1 × 10
6
 concentration, PC2 image was appropriate for the images at 1 DAI, while 

PC1 image was used for the images at 2 - 5 DAI. Finally, the diseased areas were extracted from binary images.

Classification Accuracy using PLS-DA Model

PLS-DA was performed for analyzing the relationship between defined sample groups. A model was developed to 

detect bacterial-infections in watermelon data extracted by band ratio and PCA methods. Table 1 shows the classification 

results for the detection of watermelon seedlings using NIR spectra according to the preprocessing and used region of 

wavelength. When a PLS-DA model based on two-band ratio was applied, the sensitivity values obtained from the model 

were 0.95 for calibration and 0.93 for validation. Furthermore, the specificity values for two-band ratio were 1.00 for both 

calibration and validation sets. For the model extracted by PCA, the sensitivity values for calibration and validation were 

0.87 and 0.83, respectively. The specificity values for PCA were 0.99 for calibration and 1.00 for validation. The model 

based on two-band ratio revealed better classification accuracies to distinguish diseased areas from watermelon leaves. 
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Fig. 9. Group values predicted by PLS-DA model for classification of BFB infection in watermelon leaves.

Fig. 10. Visualization of watermelon leaves infected with BFB using significant wavelengths in the hyperspectral images. 
Diseased areas as affected by the days after inoculation (DAI) were extracted by two-band ratio and principal component 
analysis (PCA) methods. 

A beta coefficient plot was constructed for the PLS-DA model built for the entire 1,000 - 1,700 nm spectral region. The 

most informative wavelengths for the PLS-DA model were 1,230, 1,400, 1,450, and 1,610 nm (Fig. 8). The group values 

predicted using the optimal PLS-DA model and the actual group values for the watermelon seedlings are shown in Fig. 9. 

The group values were assigned 1 for healthy areas and 2 for diseased areas. A threshold of 1.5 was set between both 

groups to evaluate the classification performance. Samples within the range of 1.5 at any groups were considered as 

classified in that group. The PLS-DA plot showed distinct groupings of diseased and healthy leaves in the calibration and 

validation sets.

Visualization

One of the advantages of HSI is that it presents a visualization map for a sample. Compared to traditional spectroscopy, 

each pixel in HSI data contains its own information. The map generated with the PLS-DA model provides information for 

determining the existence of BFB infection at each pixel of watermelon sample images. In this study, 50 hyperspectral 

images for the treatments of 1 × 10
4
 and 1 × 10

6 
cfu/mL concentrations were visualized by applying the PLS-DA model. 

Green color indicates a low value and red color a high value. The diseased areas were observed from 1 DAI in the 

visualization map for 1 × 10
6 
cfu/mL concentration (Fig. 10). 
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Discussion

Hyperspectral Reflectance of Watermelon Leaves Infected with BFB

In digital agriculture, monitoring plant health and detecting pathogens are essential for reducing the spread of diseases 

and for improving effective crop management strategies (Martinelli et al., 2015). Previous studies (Zhao et al., 2016; 

Mahlein et al., 2017) have been reported for detection, identification, and quantification of different plant diseases caused 

by viral, fungal, and bacterial infection.

BFB, which can cause serious damage to cucurbits, may be introduced into a field by contaminated seeds, infected 

transplants, or infected wild cucurbits. The first symptom in watermelon seedlings appears as a dark, water-soaking on the 

lower surface of cotyledons and leaves, followed by necrotic lesions, which may lead to chlorosis. In young seedlings, 

lesions can occur in the hypocotyl, resulting in collapse and death of the plant. 

In this work, HSI was applied to detect BFB infection in watermelon seedlings. The HSI technique combines reflectance 

spectra with image processing. The mean spectra for the watermelon leaves infected with BFB were higher than those for 

the healthy samples in the NIR spectral range. Mean spectra for the samples increased with increasing DAI. This result 

depends on the spectral range of interests and a variety of plant diseases. The reflectance of cucumber green mottle mosaic 

virus-infected watermelon seeds was higher than that of healthy seeds in the wavelength of 950 to 1,100 nm (Lee et al., 

2016). However, the reflectance of bacteria-infected seeds was higher than that of healthy seeds in the visible region (400 

- 700 nm), whereas healthy seeds had a higher reflectance in the NIR region of 750 to 1,000 nm (Lee et al., 2017). For 

bacterial spot of tomato, the absorbance of diseased leaves was lower than that of healthy samples in the visible and NIR 

range (Jones et al., 2010). This suggests that the reflectance of diseased leaves is higher than that of healthy samples. The 

higher reflectance of bacteria-infected leaves in the NIR region may be caused by toxic byproducts associated with the 

growth of Acidovorax avenae subsp. citrulli (Lee et al., 2017).

Extraction of the Diseased Area

HSI acquisition generates considerable amounts of spectral data. Thus, extracting relevant information instead of using 

the original data is necessary (Sun et al., 2017). Two-band ratio and PCA were applied to extract the diseased area from 

each sample. Band ratio algorithms are frequently used to select the significant wavelengths for discrimination of infected 

area against healthy samples and to visualize the identification and distribution of resultant images (Yuan et al., 2014; 

Huang et al., 2016). Based on t values from the t-test between the two groups of healthy and infected areas, 1,588 and 

1,450 nm wavelengths were selected as two significant bands. 1,588 and 1,450 nm wavelengths are known to be linked 

to strong absorption by the N-H stretching first overtone and the O-H functional group of water, respectively (Sevgi and 

Christian, 2017). Adjacent bands in the spectrum tend to be highly correlated. PCA was used to reduce the spectral 

dimensionality of hyperspectral reflectance images, and to determine effective wavelengths that are suitable for detecting 

blueberry fruit maturity (Yang et al., 2014), skin defects in bi-colored peaches (Li et al., 2016), and apple scab disease 

(Nouri et al., 2018). In the process of creating PC images, a covariance matrix of the images was calculated. This 

covariance matrix was then used to determine the eigenvalues that were equivalent to the variance of each PC image. 

These PC images were ordered in the descending order of variance magnitude, where the first PC explained most of the 

variance. The first three PC images (PC1, PC2, and PC3) were applied to the hyperspectral data as affected by DAI. A 
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different PC image was used to extract diseased areas from binary images. The principal components explained the 

features of the HSI data properly. A quick visual inspection of the first three PC images revealed that diseased areas 

became more obvious in transformed images, demonstrating that PCA could extract useful features. PC images 

implemented to extract the disease symptoms were inconsistent according to the inoculation concentration and DAI. 

From these results, we realized that bacterial disease symptoms were observed even at 1 DAI by the application of 

two-band ratio or PCA. This implies that early detection of BFB symptom in watermelon leaves is possible if an 

appropriate method to discriminate between non-infected and infected areas is applied. In contrast, at least 3 - 4 days were 

required to detect disease symptoms in the watermelon leaves through digital images or non-preprocessed HSI.

Classification Accuracy and Visualization using PLS-DA Model

PLS-DA is a versatile algorithm that can be used for predictive and descriptive modeling as well as for discriminative 

variable selection (Lee et al., 2018). Much research has been performed to detect aflatoxin on corn kernels (Kandpal et al., 

2015), decay lesions in citrus (Folch-Fortuny et al., 2016), and transgenic maize kernel (Feng et al., 2017) using PLS-DA 

models. In this work, HSI data extracted by two-band ratio and PCA was used for PLS-DA modeling to predict the 

infection accuracies of bacterial disease in watermelon leaves. Watermelon samples for PLS-DA modeling were randomly 

divided into calibration and validation sets consisting of 70% and 30%, respectively. Only the calibration data set was 

used to build the classification model, while the validation data set was used to test its capability in classifying new samples.

Using the hyperspectral data extracted by two-band ratio, the sensitivity obtained from the PLS-DA model was 0.95 for 

calibration and 0.93 for validation. For the model extracted by PCA, the sensitivity for calibration and validation were 

0.87 and 0.83, respectively. The specificity values for two-band ratio were 1.00 for both calibration and validation sets. 

The specificity for PCA was 0.99 for calibration and 1.00 for validation. The model based on two-band ratio revealed 

better classification accuracies to distinguish BFB in watermelon leaves. The closer to 1 the sensitivity and specificity of 

a given class are, the better the classification performance of the model (López-Maestresalas et al., 2016). Similar 

classification results using HSI and PCA were reported in recent studies (Jiang et al., 2018; Sun et al., 2018). These results 

suggest that the combination of HSI techniques and PLS-DA allows us to accurately discriminate diseased from healthy 

areas in watermelon seedlings.

The most significant wavelengths selected by PLS-DA model were 1,230, 1,400, 1,450, and 1,610 nm. The 1,230 and 

1,610 nm wavelengths could be attributable to the influence of CH stretching modes. The 1,400 and 1,450 nm 

wavelengths are associated with water absorptions bands due to the second and first overtones of OH stretching and OH 

combination bands (Sevgi and Christian, 2017). This may be associated with water loss from the tissue in and around the 

diseased area.

Image visualization helped to present the distribution of different features between the two groups of diseased and 

healthy leaves (Feng et al., 2017). HSI data treated with different inoculation concentrations were visualized by applying 

a PLS-DA model. Diseased areas were distinctly observed at 1 DAI in the visualization map for the 1 × 10
6 

cfu/mL 

concentration. However, a small spot in red was displayed around the point where the leaf vein meets the petiole. This 

outcome was judged to be a misclassification due to unexpectedly high reflectance. Thus, careful attention is required to 

minimize inaccurate classifications. Exact separation of the vein and the petiole from a leaf image may be helpful in this 

regard.
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This study was conducted to detect BFB infection in watermelon seedlings using near-infrared HSI and to compare the 

discrimination accuracies using a PLS-DA model by two extraction methods, band ratio, and PCA. Our results suggest 

that near-infrared HSI has promising potential to detect disease symptoms in watermelon leaves infected with BFB. These 

results may stimulate the development of techniques to extend the discriminative analysis from the leaf level to the canopy 

level.
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