All Issue

2019 Vol.37, Issue 4 Preview Page

Research Article

31 August 2019. pp. 463-472
Abstract
References
1
Ball MC, Butterworth JA, Roden JS, Christian R, Egerton J, Wydrzynski TJ (1995) Applications of chlorophyll fluorescence to forest ecology. Funct Plant Biol 22:311-319. doi:10.1071/pp9950311
10.1071/PP9950311
2
Benito B, Lorite J, Peñas J (2011) Simulating potential effects of climatic warming on altitudinal patterns of key species in mediterranean-alpine ecosystems. Clim Chang 108:471-483. doi:10.1007/s10584-010-0015-3
10.1007/s10584-010-0015-3
3
Bhandari SR, Kim YH, Lee JG (2018) Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings. Hortic Sci Technol 36:619-629. doi:10.12972/kjhst.20180062
10.12972/kjhst.20180062
4
Bjorkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. doi:10.1007/BF00402983
10.1007/BF0040298324233012
5
Chamberlain D, Hyam R, Argent G, Fairweather G, Walter KS (1996) The genus Rhododendron: its classification and synonymy. Royal Botanic Gardens Edinburgh, Oxford, UK, pp 1-22
6
Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533-1540. doi:10.1093/jxb/50.338.1533
10.1093/jxb/50.338.1533
7
Fu W, Li P, Wu Y (2012) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135:45-51. doi:10.1016/j.scienta.2011.12.004
10.1016/j.scienta.2011.12.004
8
Gong J, Zhang Z, Zhang C, Zhang J, Ran A (2018) Ecophysiological responses of three tree species to a high-altitude environment in the southeastern Tibetan plateau. Forests 9:48. doi:10.3390/f9020048
10.3390/f9020048
9
Harris GC, Antoine V, Nevidomskyte D, Koniger M (2006) Seasonal changes in photosynthesis, protein composition and mineral content in Rhododendron leaves. Plant Sci 170:314-325. doi:10.1016/j.plantsci.2005.08.024
10.1016/j.plantsci.2005.08.024
10
Hwang JS, Choo YS (2016) Solute patterns and diurnal variation of photosynthesis and chlorophyll fluorescence in Korean coastal sand dune plants. Photosynthetica 55:1-14. doi:10.1007/s11099-016-0232-8
10.1007/s11099-016-0232-8
11
Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA (2016) Chlorophyll a, fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. doi:10.1007/s11738-016-2113-y
10.1007/s11738-016-2113-y
12
Kofidis G, Bosabalidis AM, Moustakas M (2007) Combined effects of altitude and season on leaf characteristics of Clinopodium vulgare (Labiatae). Environ Exp Bot 60:69-76. doi:10.1016/j.envexpbot.2006.06.007
10.1016/j.envexpbot.2006.06.007
13
Körner C (1999) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Verlag, Berlin, Heidelberg, Germany, pp 1-165. doi:10.1007/978-3-642-98018-3_1
10.1007/978-3-642-98018-3_1
14
Matysiak B (2004) Effect of light intensity on growth and chlorophyll fluorescence of Rhododendron microcuttings during acclimatization. Folia Hortic 16:107-114
15
Maxwell K, Johnson GN (2000) Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659-668. doi:10.1093/jexbot/51.345.659
10.1093/jexbot/51.345.65910938857
16
Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983. doi:10.1093/jxb/ert208
10.1093/jxb/ert20823913954
17
Osório ML, Osório J, Romano A (2010) Chlorophyll fluorescence in micropropagated Rhododendron ponticum, subsp. baeticum, plants in response to different irradiances. Biol Plant 54:415-422. doi:10.1007/s10535-010-0076-1
10.1007/s10535-010-0076-1
18
Perera-Castro AV, Brito P, González-Rodríguez ÁM (2017) Light response in alpine species: different patterns of physiological plasticity. Flora 234:165-172. doi:10.1016/j.flora.2017.07.007
10.1016/j.flora.2017.07.007
19
Platt T, Gallegos CL, Harrison WG (1980) Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Astron Soc Jpn 57:341-345
20
Pollastrini M, Nogales AG, Benavides R, Bonal D, Finer L, Fotelli M, Gessler A, Grossiord C, Radoglou K, et al. (2017) Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest. Tree Physiol 37:199-208. doi:10.1093/treephys/tpw132
10.1093/treephys/tpw13228100710
21
Ralph PJ, Gademann R (2005) Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot 82:222-237. doi:10.1016/j.aquabot.2005.02.006
10.1016/j.aquabot.2005.02.006
22
Rascher U, Liebig M, Lüttge U (2000) Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ 23:1397-1405. doi:10.1046/j.1365-3040.2000.00650.x
10.1046/j.1365-3040.2000.00650.x
23
Reinhardt K, Castanha C, Germino MJ, Kueppers LM (2011) Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine. Tree Physiol 31:615-625. doi:10.1093/treephys/tpr055
10.1093/treephys/tpr05521757486
24
Sancho-Knapik D, Mendoza-Herrer Ó, Gil-Pelegrín E, Peguero-Pina J (2018) Chl fluorescence parameters and leaf reflectance indices allow monitoring changes in the physiological status of Quercus ilex L. under progressive water deficit. Forests 9:400. doi:10.3390/f9070400
10.3390/f9070400
25
Schmid B, Hector A, Huston MA, Inchausti P, Nijs I, Leadley PW, Tilman D (2002) The design and analysis of biodiversity experiments. In M Loreau, S Naeem, P Inchausti, eds, Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford University Press, Oxford, UK, pp 61-75
26
Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of photosynthesis. Springer Berlin Heidelberg, Germany, pp 49-70. doi:10.1007/978-3-642-79354-7_3
10.1007/978-3-642-79354-7_3
27
Serôdio J, Ezequiel J, Frommlet J, Laviale M, Lavaud J (2013) A method for the rapid generation of nonsequential light-response curves of chlorophyll fluorescence. Plant Physiol 163:1089-1102.doi:10.1104/pp.113.225243
10.1104/pp.113.22524324067245PMC3813635
28
Shen SK, Wu FQ, Yang GS, Wang YH, Sun WB (2015) Seed germination and seedling emergence in the extremely endangered species Rhododendron protistum var. giganteum - the world's largest Rhododendron. Flora 216:65-70. doi:10.1016/j.flora.2015.08.006
10.1016/j.flora.2015.08.006
29
Sherman R, Mullen R, Li H, Fang Z, Wang Y (2008) Spatial patterns of plant diversity and communities in alpine ecosystems of the Hendguan mountains, northwest Yunnan, China. J Plant Ecol 1:117-136. doi:10.1093/jpe/rtn012
10.1093/jpe/rtn012
30
Shrestha N, Su X, Xu X, Wang Z (2017) The drivers of high rhododendron diversity in south-west china: does seasonality matter? J Biogeogr 45:438-447. doi:10.1111/jbi.13136
10.1111/jbi.13136
31
Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photo-protection in high-mountain plants. Planta 207:313-324. doi:10.1007/s004250050488
10.1007/s004250050488
32
Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the himalayan elevation gradient in Nepal. Global Ecol Biogeogr 11:291-301. doi:10.1111/1365-2745.12955
10.1111/1365-2745.12955
33
Villemereuil PD, Mouterde M, Gaggiotti OE, Till-Bottraud I (2018) Patterns of phenotypic plasticity and local adaptation in the wide elevation range of the alpine plant Arabis alpina. J Ecol 106:1952-1971. doi:10.1111/1365-2745.12955
10.1111/1365-2745.12955
34
Wang R, Yu G, He N, Wang Q, Xia F, Zhao N, Ge J (2014) Elevation-related variation in leaf stomatal traits as a function of plant functional type: evidence from Changbai mountain, China. PLoS One 9:e115395. doi:10.1371/journal.pone.0115395
10.1371/journal.pone.011539525517967PMC4269444
35
White AJ, Critchley C (1999) Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. Photosynth Res 59:63-72. doi:10.1023/a:1006188004189
10.1023/A:1006188004189
36
Zhang Y, Zhang X, Wang YH, Shen SK (2017) De novo assembly of transcriptome and development of novel EST-SSR markers in Rhododendron rex Levl. through illumina sequencing. Front Plant Sci 8:1664 doi:10.3389/fpls.2017.01664
10.3389/fpls.2017.0166429018469PMC5622969
37
Zhou Y, Huang L, Wei X, Zhou H, Chen X (2017) Physiological, morphological, and anatomical changes in Rhododendron agastum, in response to shading. Plant Growth Regul 81:1-8. doi:10.1007/s10725-016-0181-z
10.1007/s10725-016-0181-z
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 37
  • No :4
  • Pages :463-472
  • Received Date : 2018-11-03
  • Revised Date : 2019-04-17
  • Accepted Date : 2019-05-16